红外透光率重复性测试

红外透光率重复性测试

问:红外光谱的原理
  1. 答:原理:
    当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
    拓展资料:
    光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;
    按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。
    分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。
    红外光谱 (Infrared Spectroscopy, IR) 的研究开始于 20 世纪初期,自 1940 年商品红外光谱仪问世以来,红外光谱在有机化学研究中得到广泛的应用。现在一些新技术 (如发射光谱、光声光谱、色——红联用等) 的出现,使红外光谱技术得到更加蓬勃的发展。
  2. 答:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
  3. 答:红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱 。
  4. 答:将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。
  5. 答:红外光谱的原理:
    当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
    拓展资料
    红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。
    红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
    参考资料:
  6. 答:有些企业朋友在采购光谱分析仪时,想了解下其光谱分析仪原理,便于后期采购使用。这样在采购时就知道哪些地方需要注意。其实光谱仪原理非常简单。
    光谱分析仪是一种利用不同的金属会拥有不同的折射光,当激发后金属反馈的折射光,经过内部核心装置光栅进行光线处理,再经过内部的传感器对光线进行处理,最后将得到的数据通过电脑软件显示给操作人员。这就是光谱原理的大致过程。
    由以上检测的原理可知,无论进行分光的光栅,还是对光线感光检测处理的传感器,对于光谱分析仪来说都是非常重要的核心部件,所以企业在采购光谱分析仪时,需要格外关注这两个部件的质量如何,这样采购的光谱仪质量才会更好。
问:紫外可见红外光谱仪怎么测量液体的透过率
  1. 答:紫外可见红外光谱仪怎么测量液体的透过率
    紫外可见分光光度计就和红外光谱仪一样,只是波长范围不一样。
    紫外可见分光光度计照射在样品上,样品会吸收或者反射光波,探测器探测这些反射光、透射光的强度。同时,光度计照在样品上的光是从紫外区扫描到可见光区,这样的本质是光从低波长扫描到高波长,不同波长的光照射在样品,样品的吸收和反射是不一样的。由此产生了紫外可见光光谱图,波长和透射率的图线。你仔细看,其实这个和红外是一样的。
    紫外可以用来做物质定性检测,通过对比标准谱图库的谱图,可定性得知这是什么东西。
    另外,在稀溶液中,光遵循兰博-比尔定律,即透光度和样品池长度、溶液浓度成比例关系。所以,如果有某种物质的标准工作曲线,那么可用该仪器测定这种物质的浓度。
    所以,其实你可以用紫外来测定环氧乙烷的残留,前提是你要找到该物质的最大吸收波长在哪儿,然后做出此物质的标准工作曲线。不过,有可能你的体系里环氧乙烷的吸收都被其他物质所掩盖,那样就测不出来了。
问:红外测试一般是透过率还是吸光度
  1. 答:红外光谱的X轴为波数(cm-1)Y轴为透过率(T%),您说的高度是不是就是峰的透过率,红外主要是定性的所以峰的高度不重要,如果是定量的话峰的大小才有意义,峰的高度是与样品有关的不同样品峰的高度不一样比如说用ATR测试在同一种晶体的情况下就与样品的折射率有关。在红外里面主要是标峰,看峰出在哪个波数来分析谱图的。通常你只需要标出峰,然后根据峰表来了解这个物质。希望对你有帮助。
红外透光率重复性测试
下载Doc文档

猜你喜欢