高中生高效率数学学习的智力特征研究_数学论文

高中生高效率数学学习的智力特征研究,本文主要内容关键词为:智力论文,特征论文,数学论文,高中生论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

      (一)问题的提出

      “国际权威教育评估统计发现,华语地区学生的数学能力是通过增加更多课时和延长课外学习时间实现的”[1],该观点说明了华语地区学生数学学习效率整体上偏低,但是忽略了学生数学学习效率有个体差异性,我国高效率数学学习学生有什么样的心理特征亟待研究.研究者前期对高中生高效率学习的心理特征开展了一些研究,初期构建的“高效率数学学习心理特征模型”包含动机、态度、意志和元认知四个层面;[2]在近期的研究中,融合心理学与数学教育两个视角对已有研究进行质性分析,构建了包含心理机制、元认知、学习策略、非智力因素和数学学习素养五个结构要素(一级节点)的“高效数学学习学生心理结构模型”,发现五者之间存在着不同程度的关系,其中,非智力因素是高效率数学学习的动力源泉,[3]但是非智力因素只有与智力因素结合起来才能发挥作用.[4]面对高中繁重的课业负担,我们有必要进一步研究高中生高效率学习的智力特征.

      汪家玲采用学生问卷和个案访谈的方法,分析了影响学生数学学习效率的因素,指出数学学习效率与学生自身的智力水平有着重要的关系,但是,智力水平的高低并不是决定因素.[5]全国教育科学“十五”规划重点课题——数学教学效率论(EHA030431)江西子课题组从高效率数学学习学生的大量案例中总结比较得出,数学高效率学习者与低效率学习者智商有差异,但差异不大,这与心理学随机人群的智商呈正态分布的结论是相吻合的.[6]康玥媛采用个案研究的方法,以天津市第一中学高一年级三名数学高才生作为个案研究对象进行调查,得到数学高效率学习者智力水平较高,其观察力、记忆力、抽象思维能力、创造力较好,善于逻辑推理和数学理解的结论.[7]以往对高效率数学学习学生的智力特征研究多采用自制问卷的调查方法,但自制问卷的信度与效度较低,不能准确地反映出被试的智力特征.有的研究尽管也采用了《瑞文标准推理测验》的量表,但没有对智力的不同维度作方差分析和回归分析.本文通过《瑞文标准推理测验》探析高效率数学学习学生的智力水平和结构特征,包括高效率数学学习学生在各项智力因素上的水平特征,及各项智力因素对数学学习效率的影响路径等.

      (二)概念界定

      关于高效率学习,国内外学者有着不同的观点,如科学学习高效率学习观[8]、信息加工视角的高效率学习观[9]等.高效率数学学习是以数学学科为载体的一种高效率学习,曹才翰、蔡金法[10]明确提出数学高效率学习是一个在教师指导下高速度、高质量地获得数学知识、技能和能力,发展个性品质的过程.从时间投入和学习结果两个维度来认识高效率数学学习,即学生在时间投入方面,能够充分利用时间,全身心、积极、主动地参与数学学习,并有多方面的学习效果(认知成绩、理性精神、效率意识、良好认知结构和数学学习能力).同时,学习的过程也是不可忽略的,即学生在学习的过程中,要保持积极的学习态度,采取适宜的学习方法,具有良好的学习习惯,并且以较小的投入取得较好的数学学习效果.[11]

      本研究认为,数学学习效率是学生在数学学习过程中产生的学习感受及获得的数学学习结果的质量与投入的学习时间之比;从数学学习时间、数学学习结果、数学学习感受三个方面衡量学习效率的高低,高效率数学学习学生应是在数学学习中投入较少的时间和精力,学习结果质量高,在学习过程中感到轻松愉悦的学生.相对而言,低效率数学学习学生是在数学学习中投入较多的时间和精力,学习结果质量差,在学习过程中感到疲劳的学生.普通学生则是在数学学习时间、数学学习结果、数学学习感受方面均居于两者之间水平的学生.

      二、研究方法

      (一)被试选择

      本研究采取目标抽样中的标准抽样方法,选取不同数学学习效率的学生,高效率数学学习学生、普通学生、低效率数学学习学生分别对应纳入高效组、普通组、低效组,抽样标准见表1.

      (二)样本分布

      具体样本来自天津、江苏、福建三个地区的9所高中,教师根据研究者提供的操作定义,并结合学生的平时表现,分别选取出被试,其中,包括高效组95人、普通组111人、低效组81人.通过网络限时施测的方式收集数据,收集时间为2015年1月22日至2015年2月8日,共收到数据287份,有效数据276份,有效问卷回收率为96.17%.

      

      (三)研究工具

      采用《瑞文标准推理测验》(张厚粲、王晓平主持修订1986版)测量学生智力水平.

      (四)研究程序与数据处理

      以网上限时施测的方式对被试进行瑞文标准推理测验,将所获总分数据进行标准化处理,得到学生的智力水平,对瑞文标准推理测验的知觉辨别、比较概括、推理分析、关系判断、抽象思维五个维度进行描述性统计分析、均值比较、相关分析、回归分析,分析所获得的数据基本可以得出高效率数学学习学生的智力特征.本研究运用SPSS 19.0软件处理数据.

      三、结果与分析

      (一)三组学生智力等级概况

      本研究根据统计出的原始分数,并结合学生的实际年龄,根据《瑞文标准推理测验》百分等级换算表,统计出全部学生的智力百分数(见表2),有68.1%的高效组学生的智力百分数分布在75%以上,表明高效组大部分学生的智力水平处于良好以上水平,部分学生甚至可达到优秀水平;低效组大部分学生的智力百分数分布在50%以下,处于中等以下水平.

      

      (二)三组学生智力特征的均值比较

      1.总体分析

      本研究对调查所获数据进行初步的描述统计,结果见表3.从均值和标准差来看,高效组均值最高,高于其他两组的平均水平.进一步对方差进行分析,检验不同学习效率的学生在智力水平上是否有显著的不同,结果F统计量为38.661,显著性概率为0.00<0.01,表明至少有两个组别的学生在智力水平的均值上有着显著的差异,需进一步事后两两比较.研究数据表明,三组学生间的两两差异均达到显著水平(p<0.01),即高效组学生智力整体水平显著高于普通组与低效组学生,普通组学生智力整体水平显著高于低效组学生.

      

      2.知觉辨别特征

      为了解高中生高效率数学学习的知觉辨别维度特征,本研究以学习效率的组别为自变量,以知觉辨别维度为因变量进行单因素方差分析.结果表明,不同学习效率的学生在知觉辨别维度上没有显著差异(p=0.122>0.01).

      3.比较概括特征

      方差分析初步结果显示,不同学习效率的学生在比较概括维度上有显著性差异(p<0.01),在方差齐性检验中,F值达到显著水平(p=0.000<0.05),因此,本研究选用Tamhane's T2检验法进行事后比较,结果表明,高效组显著高于普通组(p<0.05)、低效组(p<0.01),普通组与低效组间无显著性差异(p>0.05).

      4.推理分析特征

      方差分析初步结果显示,不同学习效率的学生在推理分析维度上有显著性差异(p<0.01),本研究继续以Tamhane's T2法进行事后多重比较,结果表明:高效组显著高于普通组、低效组(p<0.01),普通组显著高于低效组(p<0.01).

      5.关系判断特征

      方差分析初步结果表明,不同学习效率的学生在关系判断维度上有显著差异(p<0.01),本研究以Tamhane's T2法进行事后多重比较,结果表明:高效组显著高于普通组、低效组(p<0.01),普通组显著高于低效组(p<0.05).

      6.抽象思维特征

      方差分析初步结果表明,不同学习效率的学生在抽象思维维度上存在显著性差异(p<0.01),本研究以Tamhane's T2法进行事后多重比较,结果表明:高效组显著高于普通组、低效组(p<0.01),普通组显著高于低效组(p<0.01).

      (三)高效率数学学习学生智力水平与数学学习效率的相关分析

      沈德立、白学军在研究中指出,高质量是高效率学习的关键指标,[12]一些学者在研究中也以特定时间内学生取得的学习成绩作为学习效率的量化指标.[13][14]本研究在高效组的取样过程中综合考虑了学生的数学学习结果、学习时间及学习感受,剔除了数学学习时间长或者数学学习感受不合乎界定的数学学习成绩好的学生.也即高效组学生是用较少的数学学习时间,具有良好的数学学习体验,并取得良好的数学学习结果的学生.在数学学习结果中数学学习成绩是可测量的关键指标,因而,在高效率数学学习学生智力水平与数学学习效率的相关分析中,本研究将数学学习成绩作为数学学习效率的替代性变量.

      由相关性分析我们可以得知,数学学习效率与智力水平相关系数为0.783,两者之间呈高度相关.数学学习效率与知觉辨别能力、比较概括能力、推理分析能力、关系判断能力、抽象思维能力的相关系数分别为0.209、0.198、0.598、0.533、0.717,说明这五种智力因子与数学学习效率均有关联,其中,推理分析能力、关系判断能力、抽象思维能力与学习效率的相关性尤为显著,特别是抽象思维能力与数学学习效率的相关系数达0.717(p=0.000),说明学生的抽象思维能力与数学学习效率呈显著性相关.

      (四)高效率数学学习学生智力水平与学习效率的回归分析

      为探讨几种智力成分对学习效率的综合影响机制,本研究采用多元逐步回归分析的方法依序选取自变量进入回归模型中,其中,预测变量为知觉辨别、比较概括、推理分析、关系判断、抽象思维,因变量为学习效率.我们可以看出,允差值介于0.322至0.401间,VIF值未大于评鉴指标值10,表示进入回归模型的自变量间没有多元共线性问题,[15]可排除由于变量彼此间高度相关而导致回归系数不准确的问题,因此,可以使用逐步回归分析方法.知觉辨别、比较概括未进入回归方程,说明它们对学习效率的主效应不显著,不能作为预测学习效率的直接指标,而推理分析、关系判断、抽象思维均可作为直接预测学习效率的显著变量.研究发现,抽象思维能力对数学学习效率的直接影响为0.530,间接效果为0.164,总效果为0.694,这就更加凸显了抽象思维能力对学习效率的重要影响;推理分析能力对数学学习效率的直接影响为0.236,间接效果为0.055,总效果值为0.291;关系判断能力对数学学习效率的直接影响为0.182,间接效果为0.087,总效果值为0.269.也即推理分析能力、关系判断能力二者对学习效率的影响为中度效果.

      (一)高效率数学学习学生的智力特征

      通过对三组被试各项智力水平作进一步的均值比较,我们可以得到高效率数学学习学生在知觉辨别、比较概括、推理分析、关系判断和抽象思维五个方面的特征.

      1.知觉辨别能力

      在知觉辨别的能力水平上,高效组学生的平均得分为11.72,普通组与低效组学生在该维度的平均得分为11.63、11.45(各维度满分均为12).方差分析结果表明,高效组与普通组、低效组之间并没有显著性差异(p>0.05).这意味着高效组学生在知觉辨别能力上并没有表现出明显的特征.说明三组学生在给定的数学情境下,将情境中的元素转化为与数学相关的内部信息,并选用恰当的数学语言来表达,三组学生没有明显差异.这一结果与高中数学学习优秀生在观察分辨能力方面的确更高一筹的观点不尽一致,[16]原因可能是高效学生与学习优秀学生不能完全等同,该研究也没有采用公认的瑞文推理测试方法.

      2.比较概括能力

      在比较概括的能力水平上,高效组学生的平均得分为11.01,普通组与低效组学生在该维度的平均得分为10.75、10.55,普通组与低效组间无显著性差异(p>0.05).方差分析结果表明,高效组得分显著高于普通组(p<0.05)、低效组(p<0.01),表明相对于其他学生而言,高效率数学学习学生的比较概括能力较强.他们更能正确地对图形进行横向、纵向比较,对相似图形进行判断、区分,从而推断出所需的合适图形;同时有清晰的思路,在比较的过程中能发现异同点,并用数学语言将之概括起来,分门别类地重新纳入知识体系中.

      3.推理分析能力

      在推理分析的能力水平上,高效组学生的平均得分为11.34,普通组与低效组学生在该维度的平均得分为10.75、9.97.方差分析结果表明,高效组显著高于普通组(p<0.01),普通组显著高于低效组(p<0.01),说明高效组学生对数学问题的推理分析能力优于普通生以及低效率学生.他们更懂得在最短时间内如何安排,才能产生最大效益,一旦无路可走时,灵活运用迂回政策.我们可以将他们在推理的时间、路径、方向上的特征简单总结为:节约思考、压缩推理、进退自如.这与20世纪90年代的一项研究“推理能力强的学生对图形信息加工的速度有时低于推理能力差的学生”[17]的研究观点不同,原因是本研究没有将信息加工速度视为学习效率.

      4.关系判断能力

      在关系判断的能力水平上,高效组学生的平均得分为10.54,普通组与低效组学生的平均得分为9.82、9.08.方差分析结果表明,高效组显著高于普通组、低效组(p<0.01),普通组显著高于低效组(p<0.05),说明高效组学生在解决具有复杂关系的数学问题方面优于普通生以及低效率学生,他们更能排除干扰信息,抽象出有用信息的空间形态、数量关系,获得有意义的信息,进行系统归类,能够做到全面地分析问题,抓住细节,顺藤摸瓜,找出规律.以往对高中生高效率数学学习认知特征研究中,并未对关系判断能力作深入探讨,这一研究结果是对以往研究[18][19]的进一步深化.

      5.抽象思维能力

      在抽象思维的能力水平上,高级组学生的平均得分为9.44,普通组与低级组学生的平均得分为7.91、6.58.方差分析结果表明,高效组显著高于普通组、低效组(p<0.01),普通组显著高于低效组(p<0.01),我们可以认为,高效组学生的抽象思维能力明显优于普通组、低效组.

      (二)高效率数学学习学生智力水平与学习效率的相关性

      相关分析结果表明,高效率数学学习学生的智力总体水平与其学习效率呈高度相关(r=0.7831,p<0.01);知觉辨别能力(r=0.209,p<0.01)、比较概括能力(r=0.198,p<0.01)与其数学学习效率呈显著的低度相关;推理分析能力(r=0.598,p<0.01)、关系判断能力(r=0.533,p<0.01)与其数学学习效率呈中度相关,抽象思维能力与其数学学习效率呈高度相关(r=0.717,p<0.01).因此,与数学学习效率关系最为密切的智力成分是抽象思维能力,说明欲提高学生的数学学习效率,抽象思维能力的培养至关重要.以往研究基本都认为抽象思维能力与学习效率有一定程度的相关关系,胡卫平在对高中生物理抽象思维能力发展的研究中表明,抽象思维能力与物理学习效率的相关系数为0.69;[20]张军翎在对抽象思维能力与语文学习效率的研究中发现,抽象思维能力与语文学习效率的相关系数为0.43.[21]相关系数之所以会有差异,可能是学科不同所致,理科学生学习效率与抽象思维能力的相关性可能高于文科学生.

      (三)高效率数学学习学生智力水平对学习效率的影响

      就推理分析、关系判断、抽象思维等五种智力成分对数学学习效率的影响而言,效果值最大的为抽象思维能力,其对数学学习效率的总体效果值为0.694,属于大效果影响.推理分析与关系判断因子对数学学习效率的效果值分别为0.291和0.269,为中效果影响.该观点印证了徐利治先生关于“学会抽象”[22]的观点的深刻性.

      五、结论、建议与研究展望

      (一)研究结论

      1.高效组学生在智力整体水平及推理分析、关系判断、抽象思维三方面的水平上显著高于普通组与低效组学生;在比较概括水平上,高效组学生显著高于普通组学生,普通组与低效组学生间无显著性差异;在知觉辨别水平上,三组学生之间并没有显著性差异.

      2.高效率数学学习学生的智力整体水平与其数学学习效率呈显著的高度相关,知觉辨别能力、比较概括能力与其数学学习效率呈显著的低度相关,推理分析能力、关系判断能力与其数学学习效率呈中度相关,抽象思维能力与其数学学习效率呈高度相关.

      3.抽象思维能力、推理分析能力、关系判断能力对学生数学学习效率均有显著影响,其中影响效果最大的是抽象思维能力.

      (二)课程与教学建议

      1.正在修订中的新一轮高中课程改革方案聚焦核心素养,研制高中数学课程的核心素养指标,除了专家经验的总结、理论的推演、国际文献的比较等方法外,基于实证数据的分析也是一种研究方法.基于本研究的结论,抽象思维能力、推理分析能力、关系判断能力是影响数学学习效率的三个主要因素,为此,这三个因素可以作为高中数学核心素养的指标要素中可供选择的要素.

      2.智力是影响数学学习效率的因素,提高学生的推理分析能力、关系判断能力和抽象思维能力均有助于提高其数学学习效率,尤其是提高学生的抽象思维能力更有助于提升其数学学习效率.基于数学概念具有抽象性,只要学生在数学概念学习过程中认识到和理解数学的弱抽象、强抽象与广义抽象,[23]在此过程中学会数学抽象,那么,他们就获得了提升数学学习效率的一项重要保障,为此,在数学学习中应该将重视数学概念的学习上升到战略高度.

      (三)研究展望

      我们的初步成果How Chinese High School Students Develop Learning Strategiesin Mathematics Education(《中国高中生的数学学习策略》),被第13届国际教育大会(HICE)接受,并做大会分组交流;另一文Chinese High School Students' Cognitive and Non-intelligent Ability Development in Mathematics Learning(《中国高中生数学学习元认知和非智力因素水平研究》)被华人教育大会接受,并做大会分组交流.我们将开展中外数学学习优秀生的智力比较研究,在世界教育舞台更加全面、系统地展示我国的数学教育成果,同时揭示不同类别学生数学学习的智力特点,为指导学生数学学习提供心理学依据.对于高效率数学学习学生的研究还需要与其他心理特征相结合,譬如数学学习策略以及数学学习非智力因素等,同时还应当结合元认知因素与心理机制等进行研究.

      致谢:由衷地感谢美国范德堡大学Paul Cobb教授、美国特拉华大学蔡金法教授、香港大学梁贯成教授、加拿大多伦多大学Douglas McDougall教授、澳大利亚墨尔本大学David Clarke教授对本文研究的智慧奉献.感谢天津市新华中学、天津市第四十二中学、天津市滨海新区汉沽第一中学、南京师范大学附属中学及其江宁分校、南京市中华中学、福州市第五中学、福州市第三中学、福州市格致中学对调研取样给予的支持与帮助.

      ①问卷编制过程中包含一道问卷背景题,题目为“除去数学课上时间,你每天花在数学学习上的时间大约是:A.3小时以上;B.2~3小时;C.1~2小时;D.0.5~1小时;E.0.5小时以下”,对回收问卷的选项进行加权平均,赋值标准为“A选项记作3小时;B选项记作2.5小时;C选项记作1.5小时;D选项记作0.75小时;E选项记作0.5小时”;根据对学生作答情况的数据统计分析可知,学生每日课下数学学习时间多在1~2小时之间,加权平均值为1.43,体现了高中学生的平均课下数学学习时间.为便于取样,本研究对高效组的选取标准定为课后学习时间为1小时以内.

标签:;  ;  ;  ;  ;  ;  ;  

高中生高效率数学学习的智力特征研究_数学论文
下载Doc文档

猜你喜欢