摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。因此,如何抑制电网谐波引起了广泛的讨论。本文论述了当前电力系统谐波的产生的主要原因,并分析了电力谐波的危害,提出了几种电力谐波的抑制技术,为电力系统谐波问题提供帮助。
关键词:电力系统;谐波;危害;滤波器;抑制
在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。
1.电力系统的谐波
(1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。
(2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。
(3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔性交流输电技术和高压直流输电技术得到极大的发展和应用。柔性交流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。
2.谐波的危害
谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。
首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。
其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。
此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。
期刊文章分类查询,尽在期刊图书馆
3.电力系统的谐波抑制技术
如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。
3.1预防性电力谐波抑制技术
预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:
(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。
(2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。 (3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。
3.2补救性电力谐波抑制技术
补救性电力谐波抑制技术是指为了解决已经存在的谐波问题而采取的技术手段,主要是在电网谐波源处加装滤波装置。常见的滤波装置有如下几种:
(1)无源滤波器。无源滤波器也称为LC调谐滤波器,是由滤波电容器、电抗器和电阻器适当组合而成的无源滤波装置。无源滤波器的基本工作原理为:由电感,电容和电阻组成的无源电路网络,通过将电容和电感调谐到对某一次谐波电流频率发生谐振,对该次谐波电流形成低阻抗支路以分流该谐波电流,从而达到在电网中滤除谐波电流的目的。无源滤波器结构简单、易于实现、设备投资较少、运行费用较低,是迄今为止应用范围最广的一种滤波手段。然而,由于无源滤波器只工作于特定频率,所以实际应用中通常用几组单调谐滤波器和一组高通滤波器相互配合组成滤波装置,以达到滤除主要的各次谐波分量的目的,但是这样容易造成各组调谐滤波器之间的相互影响,使调谐变得困难;而且无源滤波器受其电容电气特性的影响,容易和系统阻抗发生谐振,损害电容器件,严重时,甚至会使系统崩溃。
(2)有源滤波器。如图1所示,有源滤波器是通过检测补偿对象的谐波电流,然后通过控制电路注入一个与谐波电流相位相反的补偿电流,抵消谐波电流的影响,实现电源电流波形的正弦化。随着材料科学的发展以及大功率电力电子器件的开发应用,有源滤波器在耐压以及容量等问题上还有很大的发展空间。
(3)混合型有源滤波器。混合型有源滤波器是由有源滤波器和无源滤波器相结合组成的混合型滤波装置。装置的有源滤波器可以快速地补偿谐波,而无源滤波器可以同时进行谐波过滤和无功补偿,提高了滤波补偿的效率。当前混合型有源滤波器主要有串联式混合型有源滤波器和并联式混合型有源滤波器,其中并联式混合型有源滤波器的应用空间更广,已在多个直流输电工程中得到应用。
4.结语
综上所述,电力谐波给电网带来的危害是明显的,因此,我们有必要针对电力系统的谐波问题,采取科学的技术进行抑制,这不仅可以提高供电设备工作的稳定性与效率,而且能在保证供电质量的前提下降低供电的成本,对电能高效使用有着重要的指导意义。 [科]
参考文献
[1]张铁柱等.海油平台电力系统谐波分析及抑制技术研究[J].2009年度海洋工程学术会议论文集(下册).
[2]李燕青等.电力系统谐波抑制技术[J].华北电力大学学报,2001(04).
论文作者:杜占科,杨正,张彬
论文发表刊物:《电力设备》2017年第32期
论文发表时间:2018/4/11
标签:谐波论文; 滤波器论文; 电网论文; 电流论文; 无源论文; 技术论文; 电力系统论文; 《电力设备》2017年第32期论文;