海华电子企业(中国)有限公司 广州 510656
摘要:本文首先对PWM整流器直接电流控制进行原理分析模型建立,在控制方法上,对目前比较成熟的不定频滞环控制器、不定频SVPWM控制器、dq解耦控制器、滑模变结构控制器进行仿真分析,得出采用MATLAB/SIMULINK来实现整流器系统控制仿真过程,最后得出最优的控制方案。
关键词:SVPWM dq解偶 滑模变结构
Abstract:The direct current control of PWM rectifier is analyzed in principle and the model is established firstly. In control method,the simulation process of rectifier system is realized by the MATLAB/SIMULINK and the mature uncertain frequence hysteresis loop controller,the uncertain frequency SVPWM controller,dq decoupling controller and sliding mode decoupling controller was analyzed in simulation. Finally,the optimal control scheme is obtained.
Keywords:SVPWM,dq decoupling,sliding mode structure
1 引言
PWM整流器关键是控制输入电流,通过控制可控器件(IGBT)导通时间,使得整流器的输入电流与电压间的相位相同,使功率因数接近1,通过调整电流的相位,可以实现功率的双向流动,使直流侧电压保持恒定,并使其具有良好的动态响应性能[1];另外,还要尽量使算法简化以增强控制的实时性[2]。目前,在PWM整流器电流控制技术主要分为两类:即间接电流控制和直接电流控制[3-4]。本文主要对直接电流控制进行研究和仿真。
2 PWM整流器直接电流控制原理
VSR直接电流控制是针对VSR间接电流控制不足(动态响应慢,对参数敏感)而提出来的。这种直接电流控制与间接电流控制在结构上的主要差别在于:前者具有网侧电流闭环控制,而后者则无网侧电流闭环控制。由于采用网侧电流闭环控制,使VSR网侧电流动,静态性能得到了提高,同时也使网侧电流控制对系统参数不敏感,从而增强了电流控制系统的鲁棒性。本论文的直接电流控制以电流滞环控制为研究对象。
电流滞环控制是对PWM整流器输入电流的瞬时反馈控制,把给定电流信号与实际输入电流信号进行比较,二者偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路开通关断的PWM信号,该PWM信号经过驱动电路控制主电路桥臂全控型器件的开通和关断,从而控制输入电流。在功率变换器控制系统中,滞环控制单元一般同时兼有两种职能,一是作为闭环电流调节器,二是起着脉宽调制的作用。这种控制方式简单,应用范围广泛。不仅具有优良的动态性能、良好的跟踪精度而且控制系统鲁棒性好。其主要缺点是开关频率不固定,输入电流谐波分布随给滤波器设计带来困难。
为了简化滞环PWM电流控制原理分析,以单桥臂VSR滞环PWM电流控制为例,其原理图如图1所示。
式中:p-微分算子。
同单桥臂VSR滞环PWM电流控制一样,当分析三相无中线VSR滞环PWM电流控制时,也可进行每相分析。若考虑整流状态时的单位功率因素控制,在交流电流正半周,当实际相电流大于相指令电流时,该相对应桥臂的下侧功率管关断,反之则导通。
与单桥臂VSR滞环PWM电流控制不同的是,功率开关管切换时,相电流的变化率除受本相桥臂功率管开关状态影响外,还受相邻桥臂功率管开关状态的影响。
实际上,功率开关管的工作模式只存在两种组合,即零状态组合和非零状态组合。在零状态时,三相VSR桥臂交流端被短接,无法利用直流电压进行电流跟踪控制;在非零状态组合时,利用VSR直流侧电压对其相电流进行滞环电流跟踪控制,因此,非零状态组合对应的三相VSR交流侧相电压的绝对值必须大于相电动势峰值。所以直流侧电压的设计很关键,考虑到电网波动和线性控制范围等因素,直流电压常取:
3 控制器系统仿真分析
系统仿真主要针对我司项目的设计要求和性能指标,具体如下:三相交流输入电压有效值220V,直流输出电压600V~700V,额定功率12KW,最大功率48KW~60KW,动态电压超调<15%,稳定时间<10ms,系统功率因数要求98%,总谐波畸变率<6%。由这些设计要求和性能指标可以看出,本项目对直流侧电压的动态要求比较高,在负载大范围扰动的情况下,直流侧电压要求响应迅速,在短时间内达到稳定状态。
对控制方法的选择上,主要试用目前比较成熟的传统控制技术为主,通过对参数的调试以达到上述性能指标。
MATLAB是目前应用比较广泛仿真工具,其中Simulink仿真环境为系统仿真技术提供了新的解决方案。本系统采用MATLAB/SIMULINK来实现整流器系统控制仿真过程。在仿真过程中首先在SIMULINK仿真环境中搭建好主电路,主电路如图3所示,然后对不同策略的控制器按照项目所给要求仿真,最后分析仿真结果。
在对多种方案进行仿真比较后,以确定本项目最终控制策略的选择。
由图10可以看到由额定负载突变到4倍额定负载(48KW)时,电容电压下降到564V,稳定时间为0.04S;负载由48KW切换到额定12KW时,电容电压上升到662V,稳定时间为0.2S。动态电压超调符合项目要求(<15%),但是稳定时间过长,没有达到项目要求(10ms)。另外系统功率因数达到项目要求(98%),总谐波畸变率基本达标。
图11是工作在额定负载,在0.5s额定负载变为5倍额定(60KW);1s时又切回额定负载,电容电压的波形。可见在负载大范围变化之间切换时,电压上升为715V,过渡时间为1s。在额定情况下,总谐波畸变率为6%。
图11 5倍负载直流侧电压输出波形
分析结果表明:dq 解耦法基本达到项目要求,直流电压基本无静差,功率因数达到98%以上,谐波基本达到要求;但是在负载由重载(500%)到额定负载的切换过程中,直流电压波动较大,为系统所不能接受。
3.4滑模变结构控制
变结构系统的概念为:系统的控制器由若干个不同的子系统构成,这些子系统的结构或参数不同,系统在工作中根据某种函数规则在这些子系统中切换,目的是改善整个系统的动态性能,即使各子系统都是线性的,整个系统也不是线性的,而是一种有跳变的不连续的非线性系统。
系统参数如下:三相电源相电压有效值Vs=220V;若取直流侧电压参考值为600V,L=0.008H;R=0.1Ω,C=3300μF。
其控制框图为:
图13 滑模变结构控制器框图
图中K为0.003;
f(u)=u(1)*3300e-6*u(2)/0.003/(1.732*220-0.1*u(3))
首先我们观察空载启动,然后带额定负载的情况。
其直流电压波形如图14所示,可见启动特性较好,无需加软启动,其电压最大值为680V,稳定时间为0.035s,电压稳定值为605V,符合项目要求。稳定后功率因数高达99.99%,总谐波畸变率为7%。
电压最低值为562V,最大值为569V,满足项目要求;额定负载时稳定直流电压为605V,
4倍负载时稳定直流电压为610V,满足项目要求;稳定时间分别为0.02S和0.015S,基本满足项目要求。在重载情况下总谐波畸变率较额定负载时低,为3%。功率因数都99%以上。
图16是负载由额定和5倍额定之间周期性的切换的直流电压波形,可见在5倍负载下,直流电压能够在0.02S的时间内重新稳定在560V,满足项目要求。切换过程中最大直流电压为656V,满足要求。
图16 5倍负载直流侧电压输出波形
最后我们考察最恶劣的情况,负载由空载至5倍额定负载切换的情况,如图17所示。
图17 空载突加至5倍负载直流侧电压波形
由上图我们观察到,空载切换到5倍负载时,电压最低为535V,过渡0.03S后,电压稳定在560V;由5倍负载切换到空载时,电压最大为675V,过渡时间为0.02S。各技术指标符合项目要求。
至此,我们的仿真得到较满意的结果,滑模变结构控制效果较好。滑模控制,直流电压有小静差,但其鲁棒性好,能够有效抑制负载大范围波动,过渡时间快。
4 结论
综上所述,前三种控制方法可以实现交流侧电压与电流的同相位,且改善总的谐波畸变率以达到高功率因素的目的,实现直流侧电压在一定范围内稳定且可调,但直流侧电压在负载大范围扰动的情况下,动态响应不够迅速。滑模变结构控制方式改善了前三种控制方式的缺陷,得到较好的控制效,同时系统具有很好的鲁棒性,对外界干扰和参数干扰具有不变性等优点。因此本项目采用滑模变结构空间矢量PWM控制策略进行设计。
参考文献
[1]章浩 基于滑模控制的三相PWM 整流器的研究与设计. 华南理工大学硕士学位论文,2005
[2]张春,韩瑞华,江明等 三相电压型整流器SVPWM控制简化算法研究. 机电工程,2006. 10 - 0039 – 03
[3]黄忠良 基于DSP的直接电流控制电压型整流器. 兰州理工大学硕士学位论文,2006
[4]罗悦华,伍小杰,王晶鑫 三相PWM 整流器及其控制策略的现状及展望. 电气传动,2006-36-5
论文作者:蒋传荣,刘林海
论文发表刊物:《探索科学》2017年1期
论文发表时间:2017/8/25
标签:电流论文; 电压论文; 负载论文; 整流器论文; 系统论文; 项目论文; 稳定论文; 《探索科学》2017年1期论文;