摘要:随着经济和科技的发展,人们对于可再生能源的关注度越来越高。全球都面临着提高能源效率的问题,以互联网为基础的能源互联网信息通信成为现今能源发展的主要方向。能源互联网的利用改变了传统能源开发和利用的方式,也给人们的生活带来了很大的变化。将互联网引入到能源行业,致使对换联网信息通信系统的要求也更加的严格和全面。本文通过对互联网信息通信关键技术的要求进行阐述,给出互联网信息通信系统的构架,并将系统应用到能源互联网中。本文介绍了包括信息采集、技术作业、分析决策等多项互联网信息通信关键技术,最后对能源互联网的相关应用做出展望。
关键词:能源互联网;信息通信关键技术;结构;可再生资源
1 引言
当今社会,信息作为重要的社会资源,对于很多行业的发展有着至关重要的影响,例如对于电网来说,通过信息通信技术的使用,能够有效的实现电网智能化、互动化以及大型电网的运行控制,信息通信技术主要包含了信息以及通信两个重要方便,首先信息技术主要指的是对于信息的编码或者是解码,技术包含了信息数据的收集、转换、储存、传输、处理、检索分析以及使用;其次通信技术主要指的是信息数据的传播,主要技术流程包括信息的传输接入、网络的交替、移动通信、无线通信、卫星通信以及专用通信等方面,能源互联网关键技术主要包含了新能源发电技术、大容量的长距离电网输送技术、电力电子先进技术、先进的储存技术、信息技术等,能源互联网信息通信技术是能源互联网关键技术的重要组成部分。
2 能源互联网信息通信需求和特点
2.1 能源互联网信息通信需求
可以将能源互联网信息通信的需求总结为以下方面:
(1)具有多样信息采集功能和灵活的入网能力,信息通信技术需要适应各种环境实现信息通信功能和联网功能。
(2)高效的网络传输能力和大容量存储,能源互联网的发展必然需要大容量的存储,而海量的数据必须依存高效率的数据传输,实现信息的共享。
(3)高效的数据处理能力,能源互联网必将需要处理大容量的数据问题,需要对数据进行筛选和分析。
(4)高效的决策能力,能源互联网的主要功能就是将各地的能源进行整合和分配,使资源能够合理的被利用。而高效的决策能力是实现这一目标的关键。
(5)网络信息安全,能源的安全关乎到国家和个人的利益,所以保证网络的安全是能源互联网不可缺少的一个环节。
2.2 能源互联网信息通信特点
互联网信息通信技术是实现工业现代化、信息化、智能化的关键。基于对互联网信息通信技术的需求,互联网信息通信技术具有以下的特点:
2.2.1 开放性
传统的能源网大多是处于封闭状态,而能源互联网信息通信要实现开放性。对能源的开采、利用能够实现实时的接入,达到各地的能源能够达到平衡。
2.2.2 共享性
相比于传统能源网的自上而下的结构模式,能源互联网是自下而上的结构模式,各个单元之间处于平等的地位。在能源互联网结构中,发电站、储能站、用户都是对等存在的,结构中的任何能源都能被采用,能够保证高效的利用率,实现结构的灵活性。
2.2.3 高效性、智能化
传统的能源网是非常单一的,而能源互联网具有智能性和多样性,用户与平台之间实现互动,能够实现多种能源的利用。能源互联网的高效性体现在系统结构的灵活性和快速的决策能力。
期刊文章分类查询,尽在期刊图书馆
3 能源互联网信息通信总体结构
能源互联网信息通信系统是以电网为基础的,互联网信息通信技术在能源互联网中相当于人的大脑,分别包括智能决策、业务作业、采集控制、公共资源,其中信息安全技术保证了整个系统的安全性。最高层次的智能决策层相当于人类的大脑,在接受了各方传递过来的信息之后,最信息进行分类和处理,是整个系统的最重要组成部分;采集控制层相当于人体的感觉器官,实现对信息的采集和监测,同时受决策层的调配做出一系列反应。业务作业相当于人的神经系统,收集信息并对信息进行预处理;公共资源相当与人的身体,支撑着上述的所有结构和功能,实现信息的传递、存储和处理。
4 能源互联网信息通信关键技术
4.1数据信息管理技术
数据管理主要是针对信息数据的收集、整理以及分析整理过程的管理,信息数据的收集内容主要指的是各种源头数据的通用收集和整理,同时还包含了各种在线应用系统收集的同步数据以及对网络接口信息数据收集整理工作的统一管理。而对于数据信息的质量控制主要是依靠数据处理功能以及信息资源编目来完成的,通过建立信息数据质量自动化检测和控制体系构架,来有效的实现对每一个数据的质量检测,检测的过程主要是针对数据形成、使用以及废弃整个过程,对每一个数据过程阶段进行有效的质量监控。
4.2感知控制技术
从能源互联网信息通信架构中可以看出,能源互联网系统结构中分布式的设备接入种类相对较多。例如电网系统来说,数量相对比较庞大,整个系统设备环境相对比较复杂。所以对于能源互联网分布式设备的感知、运行状态监控等都需要稳定性以及精确度比较高的设备来进行。因此需要新型的传感器、传感网以及能够进行自主控制的职能芯片技术,同时分布式设备组成还涉及到了光学电流互感器、电压互感器等传感器设备。为了提升能源互联网系统设备的稳定性,还需要借助低功耗高精度的电力通讯集成电力设计技术以及电网专用的可靠性芯片技术。通过这些技术的融合使用,能够实现电网设备、电网线路、电网环境的实施精确监控,对系统进行智能化的管理,提升智能化管理的整体水平。
4.3远程监控技术
对于远程监控关键技术的分析,文章主要借助油田信息通讯管理技术来进行,数字化的油田能够有效的实现对石油生产开采过程的远程实时监控,油田生产开采远程监控系统能够通过网络技术实现对油井供图、压力变化、温度交替、电流变动以及功率变化的实时监控传输和数据分析,通过对油井供图、压力变化、温度交替、电流变动以及功率变化等信息的监控,能够对石油生产状况和进度进行实时有效的监测诊断。通过使用远程监控技术能够实现对产量的计算,使用电能消耗的分析方式能够计算统计以及控制抽油设备的平衡运行,通过对设备信息的远程监控分析和诊断能够对油井生产工作参数进行比较和设计优化,通过对油井的优化设计和信息资料诊断可以针对具体问题制定合理的解决措施。
4.4信息数据集成技术
现阶段,全球能源互联网的覆盖范围相对比较广泛,对信息数据系统的资源配置、数据的储存以及分析处理提出了更高的要求,大量数据需要进行整理和分析使用,所以就需要对不同软件以及硬件支持下的平台信息数据进行集成化的管理,通过数据的集成逐步的实现全面的信息数据共享。而这种全面的信息数据共享需要云计算、云储存、信息融合等技术的支持。这里我们以信息数据的存储为例,给予云计算的信息数据的存储也被称作是云存储,云存储能够将大量的信息数据包存储在系统网络数据中心中,而用户端的设备不需要并不需要安装大容量的硬盘来存储这些信息数据,例如电网系统来说,使用云存储技术能够大幅度的降低系统设备的成本投入,用户在需要相关数据信息的时候只需要通过安全认证之后就能够提取所需的资料。一般,系统都是使用分布式的存储形式来存储信息数据,为了提升信息数据存储的可靠性,通常都是使用冗余存储。
5 结束语
当今社会,科技和信息技术的发展能够为不同的行业提供不同程度的帮助,能源互联网信息通信关键技术是多种先进技术的高度融合,能源互联网作为现有能源基础设施的完善和补充,主要体现在分布式的新能源接入等方面。能源互联网关键技术的应用能够逐步的实现信息的交互,同时信息通信技术的支持又能够推动能源互联网的发展,所以对于整个社会来说,要抓住能源互联网信息通信关键技术的核心,更好的将信息通信技术应用于行业发展中。
参考文献:
[1]刘振亚.全球能源互联网[M].上海:电力工业出版社,2015.
[2]刘振亚.智能电网技术[M].北京:中国电力出版社,2010.
论文作者:陈静
论文发表刊物:《基层建设》2018年第28期
论文发表时间:2018/11/6
标签:互联网论文; 信息论文; 能源论文; 数据论文; 电网论文; 通信论文; 技术论文; 《基层建设》2018年第28期论文;