摘要:粉煤灰通常作为工业废料来处理,作为混凝土的掺和料,不仅能够使废弃物再利用,而且能够降低混凝土的造价,因此粉煤灰混凝土在我国已经得到了广泛的应用。适量掺入粉煤灰能够改善混凝土的性能,并有利于后期混凝土强度的发展和耐久性的提高。目前,我国混凝土结构的耐久性劣化是一个普遍存在的问题,每年都要花费大量的人力和物力来处理各种混凝土病害。因此,如何提高混凝土的耐久性是一个迫切需要解决的问题,具有十分重要的意义。
关键词:粉煤灰掺量;混凝土;耐久性;影响
1粉煤灰对混凝土的贡献
煤灰可以与水泥水化产物Ca(OH)2反应形成与C-S-H凝胶具有相似组成和力学性能的产物,而且可以降低毛细孔体积和孔径,提高混凝土强度。并且在浇注大体积混凝土时,用粉煤灰部分代替水泥,可以降低混凝土的水化热,减少温度裂缝的产生。粉煤灰对混凝土的贡献主要表现在三大效应,即火山灰效应、微集料效应和形态效应。①火山灰效应指的是粉煤灰中的活性SiO2与水泥的水化产物Ca(OH)2进行二次水化反应,生成难溶的水化硅酸盐C-S-H凝胶沉积在骨料与水泥石界面的孔隙内,水化硅酸盐C-S-H凝胶呈纤维状,具有很大的刚性和比表面积,凝胶粒子间存在着范德华力和化学键力,提高了混凝土的粘结强度和结构稳定性;②形态效应是指粉煤灰颗粒呈大小不等的球状玻璃体,表面致密光滑,在表面负电性的作用下,可以有效地分散水泥颗粒,使浆体充分包裹骨料颗粒,在塌落度和和易性不变的情况下降低用水量,起到减水作用;③微细集料效应是指按照Aim和Goff模型理论,当把揍有超细矿物掺合料的水泥基材料系统看作多元系统,则在该系统中存在着一个最紧密堆积,其值取决于超细矿物接合料颗粒与水泥颗粒的直径比,该比值越小,最紧密堆积值越大。粉煤灰颗粒的平均粒径比水泥颗粒小约一个数量级,粉煤灰细微颗粒均匀分散到水泥浆体中,填充水泥水化后的孔隙或与水泥水化产物反应,改善了混凝土的孔结构,使混凝土更加密实。
2粉煤灰掺量对混凝土耐久性的影响
2.1对抗渗性能的影响
粉煤灰的加入会增加混凝土硬化前期的孔隙率,降低前期混凝土的抗渗性能。但随着水泥水化产物Ca(OH)2的增多,粉煤灰的活性被激发,与Ca(OH)2发生二次水化反应生成水化硅酸盐凝胶,填充细化反应前期产生的孔隙。在这期间,微集料效应也发挥作用,混凝土的孔隙率降低,大孔孔径减小,密实度增大。但粉煤灰掺量过大也会因为未水化颗粒过多沉积在胶凝材料与骨料的界面处,影响混凝土的黏聚性,降低混凝土的密实度。混凝土的密实度不仅影响到抗氯离子渗透性,还关系到混凝土的抗碳化、抗冻和耐腐蚀性能。因此混凝土的抗渗性能是衡量混凝土耐久性的重要指标。
在C40高性能混凝土中掺入0,10%,20%,30%,40%的粉煤灰的混凝土进行试验研究。结果表明:随着粉煤灰掺量的增加,混凝土的电通量降低。在粉煤灰掺量20%左右时,电通量值降低幅度减小,曲线趋于平缓,当强度变化时这个掺量范围不发生变化。在C60高强混凝土中用粉煤灰取代水泥,试验结果表明:随着粉煤灰掺量的增加,混凝土的氯离子渗透系数逐渐减小,粉煤灰掺量由25%到36%时,氯离子渗透系数减小幅度会变的十分微小。
以再生混凝土材料为实验对象,掺入不同掺量的粉煤灰后,测定混凝土的孔隙率指标、自由氯离子指标、导电量和氯离子扩散系数,得出结论:粉煤灰可以明显提高再生混凝土的抗氯离子渗透性能。随着粉煤灰掺量的增加,再生混凝土的孔隙率、导电量和氯离子扩散系数均逐渐降低。在粉煤灰掺量20%时,再生混凝土的大孔占总孔隙的比率最低,自由氯离子指标最佳。最佳掺量范围又有所增加,粉煤灰掺量在32%时表现出比其他掺量更好地抗渗、耐腐蚀性。并且硬化后期孔隙总体积也较小,而若采用超细粉煤灰则在掺量8%时耐久性最佳。
期刊文章分类查询,尽在期刊图书馆
在混凝土中分别掺入0,10%,20%,30%的粉煤灰,通过测定不同龄期混凝土的总孔隙率、最可几孔径、比孔容积和RCM法测抗渗性。得出结论:28d龄期以前,混凝土的抗渗性随着粉煤灰掺量的增加而降低,随着龄期的延长,尽管总孔隙率未有明显降低,但孔径明显细化,有害孔数量明显减少;90d龄期时,掺20%粉煤灰的混凝土抗渗性最好,并且随着龄期的增长,混凝土的抗渗性有随粉煤灰掺量的增加而提高的趋势。
2.2对抗碳化性能的影响
粉煤灰对混凝土抗碳化性能的改善作用主要体现在两个方面:①粉煤灰中的活性成分与氢氧化钙二次反应产生的C-S-H类凝胶阻断或减小了毛细孔径,使混凝土微观结构致密,CO2分子难以侵入;②C-S-H类凝胶可以吸附部分CO2,阻止其继续侵入。但是粉煤灰中的活性成分与Ca(OH)2反应,使混凝土孔溶液的PH值由原来的13降低到9左右。实际上,在CO2和水的作用下,当PH值降低到11左右时,钢筋表面的钝化膜就会破坏。粉煤灰对混凝土抗碳化性能的影响就是在这正负两个方面的作用下形成的。
对矿物掺合料混凝土进行实验研究,发现掺加粉煤灰的混凝土比起未掺矿物掺合料的混凝土碳化更深。由于掺合料的加入引起的火山灰效应,混凝土中Ca(OH)2量减少,导致碳化速度加快。彭波等人的研究表明:粉煤灰的掺入会加速混凝土的碳化,并且掺量越大,速度越快。刘斌与Michael对碳化速度描述的更为细致。在不同水灰比的普通强度混凝土中分别掺入0,20%,40%,60%的粉煤灰进行抗碳化实验。研究表明:随着水灰比的增大,混凝土抗碳化能力下降,在不同的水灰比下,混凝土的抗碳化性能均随着粉煤灰掺量的增加而降低。当掺量为20%和40%时,碳化深度随时间的增长变得缓慢;试验研究认为粉煤灰掺量在15%~30%时其抗碳化性能与不掺粉煤灰的混凝土相近,但掺量为50%以上时其抗碳化性能急剧下降。这两者在掺量范围上的差异可能与水灰比和所选用的粉煤灰质量不同有关。高英力等人通过测定28d和56d龄期混凝土的碳化深度和内部孔溶液的PH值研究表明,Ⅱ级粉煤灰的掺入可以显著降低轻骨料混凝土的抗碳化性能,而超细粉煤灰对轻骨料混凝土碱度的影响不大,但当粉煤灰掺量大于20%时,混凝土内部孔溶液碱度会随着粉煤灰掺量的增加逐渐降低,混凝土的抗碳化能力也减弱。于光林考虑对钢筋的影响,他通过试验研究认为粉煤灰与混凝土中Ca(OH)2发生反应,降低了混凝土中的碱性,对钢筋锈蚀不利,特别是掺量超过30%时对钢筋混凝土中的钢筋明显不利。
2.3对抗冻性能的影响
在普通强度的混凝土中分别掺加0,15%,30%,45%的粉煤灰,进行了实验。实验结果表明:90d龄期内,混凝土的强度随粉煤灰掺量的变化值不太大,当粉煤灰掺量为30%时,混凝土的抗压强度和抗折强度都最大;经过300次冻融循环后混凝土的强度和重量损失均随着粉煤灰掺量的增加而减小,粉煤灰掺量从0提高到15%时,混凝土的300次冻融后强度和重量损失急剧降低,当掺量继续增大时,强度和质量损失基本不变。即粉煤灰掺量15%时对抗冻性的提高达到最佳。当采用不同等级的粉煤灰时,也会出现类似的性质。任建章等人在混凝土中分别掺入0,15%,25%,35%的Ⅰ级和Ⅱ级粉煤灰,在试件连续冻融100次后,掺加Ⅰ级粉煤灰的混凝土抗冻性比未掺加粉煤灰的试件好,且有一个最佳掺量15%。在此之后随掺量的增加,抗冻性下降。而掺加Ⅱ级灰的混凝土抗冻性比未掺加粉煤灰的试件要差,但在15%以后相对动弹模量加速下降。在高强混凝土中,最佳掺量又有所变化。在高强混凝土中分别掺入0,14%,25%,36%的粉煤灰进行试验。
3结论
粉煤灰对混凝土耐久性的影响随粉煤灰的质量,混凝土的水灰比、龄期,复掺矿物掺合料的种类,添加剂的掺量和其他材料的用量等的变化而有所不同。这些研究结论或者针对某一类混凝土,或者针对耐久性的某一指标,但粉煤灰对于混凝土的影响规律不应止于此。粉煤灰的掺入对混凝土强度和耐久性并不是完全有利的。粉煤灰对混凝土的早期强度不利,各项耐久性指标也较差,但对硬化后期混凝土的耐久性有明显改善。
参考文献:
[1]邢世海,超掺粉煤灰混凝土耐久性研究与应用混凝土,2016.7.
[2]冯乃谦,邢锋.高性能混凝土技术[M].北京:原子能出版社,2016.
论文作者:孙瑛
论文发表刊物:《基层建设》2017年4期
论文发表时间:2017/5/25
标签:混凝土论文; 粉煤灰论文; 耐久性论文; 水化论文; 孔隙论文; 强度论文; 性能论文; 《基层建设》2017年4期论文;