一元一次不等式章节教学中落实数学核心素养分析论文_高明鸿 彭琳

一元一次不等式章节教学中落实数学核心素养分析论文_高明鸿 彭琳

(攀枝花市第二十五中小学校教育集团)

一、知识结构:

1、教材的地位和作用:在已学习了一元一次方程的相关知识,如同方程(组)是刻画现实世界中数量相等关系的数学模型一样,不等式(组)是刻画现实世界不等关系的数学模型,因此从问题中提炼数量不等关系是研究不等式的起点。本章节主要是通过类比一元一次方程的定义、解法总结归纳出一元一次不等式的定义、解法,并熟练运用不等式的性质解一元一次不等式。只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组。同时,学习本章节时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本章节的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。那么本章内容在整个初中数学中就具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

2、书本给的课时安排:共11课时

8.1认识不等式---------------------------1课时

8.2 解一元一次不等式---------------------5课时

8.3 一元一次不等式组 --------------------3课时

复习 ------------------------------------2课时

我认为的课时安排:共13课时

8.1认识不等式---------------------------1课时

8.2 解一元一次不等式---------------------5课时

8.3 一元一次不等式组 --------------------5课时(其中不等式(组)的应用2课时)

复习 ------------------------------------2课时

3、中考考点:(1、)列不等式:主要考察不等号的使用(2、)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学词语的含义。(3、)不等式的解集,以及求不等式的解集。在利用一次函数的函数值大小求得自变量的取值范围那里将会用到。(4、)解一元一次不等式组,并会把解集表示在数轴上。注意空心圆,和实心圆的区别。要正确用不等式表示两个量的不等关系。在确定函数自变量取值范围上会用到。(5、)利用一元一次不等式解决实际问题:方案类的应用题,函数类等等。

期刊文章分类查询,尽在期刊图书馆

4、本章难点:会通过解集确定待定字母的范围;用数轴正确写出一元一次不等式组的解集;解两个以上的一元一次不等式组;通过拓展练习的完成,会通过解集确定待定字母的范围。

二、教学策略:

1、思路:本章节以认识不等式、不等式的数量关系、不等式组为主要内容,螺旋上升。通过实际情景,呈现知识内容,使学生理解数与代数的意义,培养数感和符号感。突出了不等式也是刻画现实世界的数学模型之一。通过学生自主探究活动学习数学,认识事物的数量关系和变化规律。教学中注意数与形的结合,特别是利用好数轴这个数学工具。

2、数学内容的引入:采取从实际问题情景入手的方式,贴近学生生活实际,选择具有现实背景的素材,建立数学模型,获得数学概念,掌握解决问题的技能与方法。

3、教材内容的呈现:努力创设学生自主探索学习的情景和机会,适当编排应用性、探索性和开放性问题,发挥学生的主动性,给学生留有充分的时间与空间,自主探索实践,促进学生数学思维能力、创造能力的培养与提高。

4、教学方式:本章不等式的相关知识以及探索与实践,在教学过程中,必须积极探索一些新的教学方式,真正实现学生的学习方式的根本改变。通过实际情景,呈现知识内容,努力创造学生自主探索、研究交流的空间与机会,使学生真正理解数与代数的意义。课堂教学可从“情境—问题—探究—反思—提高”入手,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。课堂中关注学生基本知识与基本技能的理解和掌握,杜绝繁难偏旧、机械式、死记硬背式的教学;充分利用现代教育技术在增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等方面的优势,利用动态演示一些不易理解的问题。

5、教学策略选择:采用“探究——发现”教学策略,这种教学策略是关于学生在教师的引导下,通过对事物现象的探素研究,获得该事物现象的本质及关于现象间规律性联系的知识,发展智力能力。在本章节中学生已经具备获取新概念的知识基础和能力基础,教材先呈现不等式及不等式的解的概念,再给出不等式的解集的概念和其几何表示,然后类比一元一次方程,研究不等式的性质与不等式的简单变形,化解难点,层层深入,抓住其中的区别与联系,使得一元一次不等式的解法呼之欲出,最后关键是解不等式组中的每个一元一次不等式,体现了转化的思想。所以我们的教学设计加强合情推理,调整“证明”的要求,强化理性精神,削弱以演绎推理为主要形式的定理证明,直观感知,操作确认,学会数学说理,发展合情推理;强调内容的现实背景,联系学生生活经验和活动经验。

列如:《一元一次不等式》本节教材介绍了一元一次不等式的概念,一元一次不等式的求解以及在数轴表示一元一次不等式的解集。它的作用有:第一,它是沟通一元一次方程的重要桥梁,是联系一次函数的重要纽带。第二,它是后面顺利学习一元一次不等式组有关内容的必备知识基础。从知识结构上讲它是在学习了一元一次方程,不等式的基本性质以及不等式的解集的基础上学习的,但是他们对一元一次不等式的认识是陌生的、不成系统的。学生具备归纳、总结的基础,但是部分学生缺乏运用类比法的能力,学生会解决一些单个的问题但是部分学生不善于联系的解决问题。另外,老师平淡的解释与书本现成的结论不能满足他们积极探求的心理,前面学生在总结不等式的基本性质时习得的经验,在这里有了一个尝试的机会。这对发展学生类比、归纳、总结的能力有很大的帮助。所以真正能够吸引学生的学习方式还是在于探求在于主动获取。

三、培养核心素养:

通过不等式一章的教学和综合实践活动培养落实学生的数学核心素养包含数感、符号意识、逻辑推理、数学建模、数学运算、推理能力、应用意识、直观想象、创造意识等九个方面。

论文作者:高明鸿 彭琳

论文发表刊物:《知识-力量》2019年8月23期

论文发表时间:2019/5/7

标签:;  ;  ;  ;  ;  ;  ;  ;  

一元一次不等式章节教学中落实数学核心素养分析论文_高明鸿 彭琳
下载Doc文档

猜你喜欢