基于鱼骨型仓库的拣选路径问题优化
张新艳, 周雨晴
(同济大学 机械与能源工程学院, 上海 201804)
摘要 :为提高鱼骨型仓库布局下的订单拣选效率,基于拣货路径距离计算模型和以最小化拣货路径总距离为优化目标的拣选路径优化模型,提出一种混沌模拟退火粒子群优化算法,引入混沌理论使粒子更高效地遍历搜寻空间,同时结合了模拟退火算法的概率突跳特点使算法在迭代后期仍具有较好的全局寻优能力.最后,通过实例仿真验证了该算法在解决鱼骨型仓库布局拣选路径优化问题上的有效性,并通过与其他算法比较,证明了该算法的先进性,为鱼骨型仓库布局下拣选路径规划问题提供了新的解决思路.
关键词 : 鱼骨型仓库布局; 拣货路径优化; 混沌理论; 模拟退火粒子群优化算法
随着国家经济快速发展,物流产业也呈现快速发展的趋势,而仓储配送是其核心环节.为提高仓储物流管理水平,应对仓储配送环节进行合理优化.2008年Hackman[1]提出有效进行仓储管理主要解决两个问题:一是快速地满足季节性和供应量等需求变化,二是整合和消除不必要的拣货路径.从仓库布局层面来说,设计仓库布局的最新趋势是改变拣选主通道的设计,以便更高效地进行拣选作业.2009年美国学者Gue等[2]提出了鱼骨型仓库布局,并证明相比传统仓库布局,鱼骨型仓库布局可减少约20%的作业路径.2011年Pohl等[3]研究非传统仓库中的货位优化问题,并针对鱼骨型仓库提出了最佳的仓库布局方法.2013年蒋美仙等[4]提出改进的鱼骨型仓库布局方法,并设计最佳仓库布局角度.2015年刘艳秋等[5]基于鱼骨型仓库布局,建立仓储货位分配优化的数学模型,并设计遗传算法求解.2015年Cardona等[6]提出生成鱼骨型仓库布局的三维详细设计方法,并通过寻找4个主要特征值的优化模型来最小化仓库的总运营成本.2016年刘权等[7]提出基于遗传算法的仓库布局优化模型,证明改进后的鱼骨型布局在仓库布局设计中具有更高的可行性和实用性.2017年刘少华等[8]基于鱼骨型仓库布局用遗传算法、蚁群算法和布谷鸟算法对拣货路径问题进行求解.从以上研究可以看出,鱼骨型仓库布局相对于传统仓库布局的优势所在,大部分关于鱼骨型仓库布局的研究都处于仓库设计和仓储货位分配阶段,少有研究涉及到拣货作业.在鱼骨型仓库布局下,由于拣货主通道与子通道之间并非简单的平行或垂直关系,因此用于传统仓库布局下的拣货路径模型不可直接被用于这种新型的仓库布局下.本文将建立在鱼骨型仓库布局下适用的拣选路径优化模型,同时考虑到在拣选车辆以平均速度进行拣选作业时,总作业能耗和总作业时间与总作业距离呈正相关关系,因而在此模型中以总作业距离作为优化目标.
第一阶段,人与兽鸟合体形象。这在中国的神话中有许多记载,比如《列子·黄帝》云:“庖牺氏、女娲氏、神农氏、夏后氏蛇首人身,牛首虎鼻。”第二阶段,人兽分离,人是人,兽是兽。这也有两种情况:一种是人兽虽分却相关、相连,另一种人兽彻底分离,不相关不相连。良渚的“神人兽面纹”显然属于第二阶段中的第一种情况。这幅图案中,人的形象是独立的,完整的,兽与鸟并不构成人体中的一部分,只是兽首为人手所执,鸟背为人所骑,因此而显示人与兽鸟相关、相连。
目前常用于拣货路径优化问题的算法有:粒子群算法、模拟退火算法、遗传算法.遗传算法的操作繁杂,需要不断交叉变异,收敛速度慢,易陷入局部最优解.粒子群算法使用简单,收敛速度快,但容易陷入局部最优[9].模拟退火算法全局搜索能力强,但搜索速度慢.为此,2013年刘爱军等[10]提出混沌模拟退火粒子群算法,并将算法应用在车间调度问题中.本文提出采用混沌模拟退火粒子群算法求解鱼骨型仓库布局下路径规划问题,同时在算法的相关参数选择上采取自适应调整的策略,以提高算法的效率和求解精度.
GPS技术作为土地工程管理中的一项重要的土地测绘技术,其在实际的应用过程中主要是采用全球地心坐标系统来实现定位。GPS技术起源于美国国防部,其可以在地球上的任意地区进行使用,由于其不受地域的限制,其使用的范围比较广。而在现今的土地工程管理中,其也被作为一种测量仪器被应用与实际的施工工作中,由于其所依靠的是24颗人造卫星来发出讯号,可以利用发三角测量原理来计算收讯者的地理位置,其在测量信息上具有很大的精确性,这为土地工程管理后续工作的开展奠定了良好的基础。
1 问题描述
本文所研究的鱼骨型仓库布局示意图如图1所示.该仓库应用人到货的拣货系统.拣选作业由拣货员操作叉车进行作业,以存取货品点为起点.拣货员从不同的存储位置上收集订单上的货品[11].假设仓库只有一个出入点,每次完成存取作业后都必须回到出入点等待下一次的仓储作业,因此仓库的出入点就是仓库的存取点,简称P&D(picking and deposit)点.该仓库采用的是左右对称的仓库布局,其中有3条拣货主通道,3条主通道都通过P&D点.
1.1 问题参数与假设条件
参数设定如下:W 为仓库的宽度;W r为两侧拣货通道和后部拣货通道的宽度;W d为两条斜拣货通道的宽度;W h为存储货格的长度;L 为仓库长度的一半;L 1为拣货通道的宽度;L 2为双排货架的宽度;α 为斜拣货通道的角度.
高中生是即将步入社会的后备军。陶冶教育法中,教师以情景陶冶情操,社会实践就是其情景,就是教育者所针对的最终目标。陶冶教育法可以很好地引导学生如何从学校过渡到社会,是社会和学校之间的衔接点。教师可以引导高中生进入类似社会实践的模拟情境,学生在此情境下进行相应的实践,从此中去寻找、体会人性中的真善美和假恶丑,继而形成自己对道德的认识和自己的道德观念。高中生需在学校内就建立起正确的道德判断力和道德认知,自己的思想品德素质才能得到有效提高,以后的人生发展也会因此而受益。
(1) 鱼骨型布局仓库左、右两部分关于中心对称;
(2) 鱼骨型布局仓库拣选通道的排列方式如图1所示,堆垛区1、2、3、4拣选通道数量相等,为m ;
图1 鱼骨型仓库布局
Fig.1 Layout of fishbone warehouse
(3) 鱼骨型布局仓库斜拣货通道角度α =45°;每个货格的长度、宽度、拣货通道宽度三者相等,即W h=0.5L 2=L 1,W r=L 1;
x ij =
(5) 拣选作业开始之前,满足所有订单的要求,且拣选作业过程中不会发生缺货现象;
(6) 待拣选货物存储于货架之上,货架由货格组成,每个货架的长度和宽度相等,不考虑货架高度;
AP&T开发这套在线流程监控设备的初衷就是为了满足客户及其生产工艺的需求,而且它还能达到汽车制造商的标准(如CQI-9标准等)。这套系统由AP&T和客户合作开发,该设计完全符合其特定要求,并已在外部和AP&T位于瑞典Ulricehamn的内部热成形生产线上进行超过一年的实际操作测试。测试结果非常理想,AP&T的多家客户已决定投资这个新的监控系统。
(7) 拣选距离计算只考虑P&D与待拣货物所在位置的距离,垂直方向上的拣货距离忽略不计;
(8) 拣选距离计算不考虑拣选通道两侧货架的待拣货物所发生的左右移动距离;
(9) 一次拣选订单总量小于拣货车辆最大承载量.
1.2 鱼骨型仓库布局拣货路径模型
基于以上鱼骨型仓库布局的参数设定以及拣选环境的假设条件,本文所建立的拣选路径优化模型如下:
打劫的话,是领头的身量最高的壮汉说出来的,故意哑着嗓子,瓮声瓮气,声量不低,将厅柱间的灰尘都震得簌簌往下掉。喊完话,他又朝正在剔指甲的老板娘打招呼:“来晚了来晚了,今天梁二狗那小子娶媳妇,我们多喝了几杯,二狗子跟他媳妇进了洞房,其他的人,还想闹洞房,我不同意,我们还要干一票大的,打完劫再闹不迟,人我都带来了!”
目标函数:
即
(1)
约束条件:
(2)
(3)
(4)
数字出版与电子出版、网络出版关系的再认识…………………………………………………孙艳华,任元军(1,100)
(5)
x 01=1,x n0 =1
(6)
式(1)~(6)中:D 为拣选车辆完成一次拣选作业总行走距离;i ,j 为任意两货位;n 为最后一个拣选货位;d ij (1≤i ,j ≤n ,i ≠j )为货位i 到货位j 之间的最短距离;d 01为P&D点到货位i 的拣货距离,即从P&D点开始拣货作业;d n0 表示货位i 到P&D点的拣货距离,即完成拣货作业回到P&D点.
(4) 拣选车辆在拣选作业开始时从P&D点出发,结束后回到P&D点;
i ,j =1,2,3,…,n
目标函数式(1)表示在一次拣选作业中最短的总行走距离;式(2)和式(3)表示所有待拣选点所在货位都被拣选且仅一次;式(4)表示除去未包含某个拣货点的路径,即不存在小回路;式(5)表示货位与货位之间是否存在拣货路径;式(6)表示拣选车辆在进行拣选作业时从P&D点出发,拣选作业结束后需回到P&D点.
1.3 鱼骨型仓库布局拣货距离计算模型
鱼骨型布局仓库中的拣选路径优化问题属于NP难问题,把目标函数设定为拣选行走路径的总距离最短.为计算上述拣货路径优化模型中的d 01、d n0 和d ij ,首先,假设任一待拣选点的序号为(s ,x ,y ,z ),其中,s =1,2,3,4表示待拣选物品所在堆垛区的编号;x =1,2,…,X ,表示待拣选物品所在的拣货通道的编号,x ≤7(本文中鱼骨布局仓库的通道数,如图1所示,共7条);y =0,1,表示待拣选物品所在通道位置的方位,如果物品在通道的下侧或右侧取y =0,相反,如果物品在拣选通道的上侧或左侧取y =1;z =1,2,3,…,Z ,表示待拣选物品在第几个货格里,编号方法为离两侧和后部过道近的货格的编号为1,并依次编号为1,2,3,…,Z .假如待拣选点的序号为(1,2,0,3),表示的是位于堆垛区1,拣货通道2,下侧的货架,从左侧过道向右数第3个货格.P&D点的位置设为(0,0,0,0),编码为0.现假设有任意两个拣选点i 、j ,序号分别为(s i ,x i ,y i ,z i )和(s j ,x j ,y j ,z j ),d ij 表示两点之间的距离.
首先,对d 01求解,数字1是指待拣选的第一个货位,可以是待拣选点中的任意一点,此处假设为1点,序号为s 1,x 1,y 1,z 1,d 01可表示为
(7)
设d n0 表示从最后一个拣选点回到P&D所行走的距离,此处假设点n 为最后一个拣选点,点n 的序号为s n ,x n ,y n ,z n ,此时,d n0 可表示为
(8)
d ij 表示任意两个拣选点i 、j 之间的距离,可表示为
(1) 当i 、j 两拣选点位于同一拣选通道时,即x i =x j 时
d ij =|z i -z j |
(9)
(2) 当i 、j 两拣选点位于不同拣选通道时
x i ,x j ∈X ;z i ,z j ∈Z
(10)
(3) 当i 、j 两拣选点位于不同堆垛区内时,分以下4种情况讨论:
① 当i 、j 两拣选点分布在堆垛区1和堆垛区4两个不同区域内时
x i ,x j ∈X ;z i ,z j ∈Z
(11)
② 当i 、j 两拣选点分布在堆垛区1和堆垛区2或堆垛区3和堆垛区4两个不同区域内时
x i ,x j ∈X ;z i ,z j ∈Z
这次大师课的当天,就有听课的同行,将我的那番话用“洗菜论”概括,并发布到了网络上,引起了热议与共鸣,我也是事后由别人转发给我才知晓的。我认为这个问题引起热烈的反响,说明广大钢琴教师和学生都希望把钢琴的教与学做得更加规范,都渴望每节钢琴课上得更有成效。同时也希望广大琴童既然选择了学习钢琴,就一定要认真对待,千万不要三天打鱼两天晒网。只去上课、自己却不想练琴地学,是对自己不负责任,那样是学不好的。所以,学生去上钢琴课应该抱着要向老师学东西—学会做一些可口的“菜”,而不是让老师跟你一起“洗泥巴”!白白浪费了宝贵的上课时间—这样学钢琴实在是太亏了!
(12)
③ 当i 、j 两拣选点分布在堆垛区1和堆垛区3或堆垛区2和堆垛区4两个不同区域内时
x ij ∈{0,1}
x i ,x j ∈X ;z i ,z j ∈Z
(13)
④ 当i 、j 两拣选点分布在堆垛区2和堆垛区3两个不同区域内时
x i ,x j ∈X ;z i ,z j ∈Z
本文利用正交设计法设计实验,表2为正交设计实验的各个因素,表1为感官评分的标准,以此展开实验得出实验结果,如表3,由以上结果可知:桑叶杜仲复合泡腾片最佳配方因素为A2B3C3D1E1F2G2,即柠檬酸35%,聚乙二醇5%,杜仲速溶粉5.75%,桑叶速溶粉17.75%,碳酸氢钠30%,甘草速溶粉1.5%,木糖醇1%。此配方所得的产品水溶液清亮,酸甜可口,口感柔和,刹口感适当,适口性好,崩解速度适当。
(14)
式(7)到式(14)包含了图1所示鱼骨型仓库布局下任意两拣选点之间距离的求解方法.
2017年12月,世界最大双向八车道隧道群济南东南二环工程项目顺利通车,掀开了济南交通新的一页。《齐鲁周刊》以一场“山色泉城——2017山东高速‘空中穿越’绿色健康跑”活动为隧道群的开通增光添彩。
2 模型求解
拣货路径规划问题是一个NP 难问题,因此采用PSO (particle swarm optimization)对该问题进行求解.在粒子群算法中,许多粒子被放在某个问题的搜索空间中,以一定的速度在搜索空间探索[12].在一个D 维的目标搜索空间中,由N 个粒子组成的粒子群落,其中第k 个粒子的位置表示为x k =(x k1 ,x k2 ,…,x kD ),k =1,2,…,N ;速度表示为v k =(v k1 ,v k2 ,…,v kD ),k =1,2,…,N ;个体极值是第k 个粒子迄今为止搜索到的最优位置,可表示为p k =(p k1 ,p k2 ,…,p kD ),k =1,2,…,N ,适应度记为p best;全局极值是整个粒子群落迄今为止搜索到的最优位置,可表示为p g =(p g1 ,p g2 ,…,p gD ),g =1,2,…,N ,适应度记为g best.在每次迭代中,粒子的速度和位置按式(15)和式(16)更新,直到满足最大迭代次数后停止.
(15)
x k ←x k +v k
(16)
式中:w 表示惯性权重,使其有拓展搜索空间的能力;φ 1和φ 2表示学习因子,即每个粒子推向p k 和p g 位置的统计加速项的权重大小;r 1和r 2是在[0,1]范围内均匀分布的随机数.
为了解决粒子群算法计算过程中振荡与过早收敛的问题,提出SAPSO (simulated annealing particle swarm optimization),即在粒子群算法中引入模拟退火算法的概率突跳特性,使粒子群算法不但可以接受好的解,也能以一定概率接受不好的解,以提高算法的全局搜索性能[10].为了提高算法的收敛速度,利用非线性自适应惯性权重w (t )代替式(15)中的惯性权重值,其表达式为式(17),使算法在前期跳出当前极值,在后期较快收敛.为优化粒子种群运动,提高搜索空间的多样性,本文采用混沌理论对r 1、r 2进行动态调整.用Logisitic模型产生混沌序列[10]公式(18).
(17)
式中:w (t )表示第t 次迭代时的惯性权重取值;t max表示最大迭代次数;t 表示当前迭代次数.姜建国等[13]提出w max=0.95,w min=0.4时算法性能最优,本文采用此取值.
仓库的拣选环境假设如下:
(18)
式中:表示r q 在第t 次迭代时的值,由混沌理论可知,当不等于0.25、0.50、0.75时,序列能呈现完全混沌的特性,变量r q 可以不重复地遍历整个搜索空间,以提高变量r q 的随机性.
混沌模拟退火粒子群算法的流程如图2所示.
混沌模拟退火粒子群算法的步骤如下:
步骤1 初始化参数设定.最大迭代次数t max,粒子的速度v k ,位置x k ,学习因子φ 1、φ 2,惯性权重w ,模拟退火因子φ sa.
步骤2 初始化拣货路径.随机生成一系列初始路径集合,用随机模拟方法判断初始路径群体是否满足约束条件式(2)~(6),以确保种群达到粒子群算法所需规模.
② 插入扰动因子,生成模拟退火的新解S 2;
步骤4 交换序操作.确定个体到个体最优解和全局最优解的交换顺序,混沌产生r 1、r 2序并和φ 1、φ 2比较选择执行的交换序,进行交换.
根据“业主有需求、生产有必要、建设有基础、资金有保证、绩效能实现”的原则和各类项目指南要求,积极帮助地方政府和农业企业申报各类中央和省级农业废弃物资源化利用项目,支持企业建设完善农业废弃物资源化利用设施,提高资源化利用能力。同时,努力争取扬州市财政每年安排扶持农业废弃物资源化利用的农业生态环保资金规模逐年增长。积极探索根据农业废弃物资源化利用规模进行奖补,以及社会化专业服务的长效机制,实现农业废弃物资源化利用的稳定持续开展。
步骤5 计算粒子适应度.针对更新后的新种群计算其适应度函数,即一次拣选作业完成行走总距离,如公式(1)所示,并更新个体的最优位置和最优适应值.
选择我院自2017年1月—2017年12月收治的53例经手术病理确诊的原发性肝癌患者作为研究对象,其中男性40例、女性13例,患者年龄分布:28~80岁,平均年龄(55±12)岁,诊断前患者均神志清醒,能够配合完成呼吸指令和CT增强扫描,且均无碘过敏反应史。
步骤6 模拟退火操作.
④ 判断新解S 2的适应度函数值是否小于初始解S 1的适应度函数值,若不大于,则用S 2代替S 1,并转至步骤6;若大于,则以φ sa的概率大小接受新解,并转至步骤5;
步骤3 粒子群算子操作.按φ 1=φ 1(1-t /t max),φ 2=φ 2(1-t /t max),φ sa=φ sa×0.97更新学习因子和模拟退火因子,同时按式(15)和(16)更新各粒子的位置和速度.
Pearson相关性分析显示结核病患者出院准备度与疾病不确定感呈负相关(P<0.05)。结核病患者群体文化程度、认知理解、经济收入、医疗卫生水平及可获得的社会支持相对有限,势必影响对疾病知识的掌握及疾病信息的获取,从而导致出院后疾病应对能力较低[16],表现为较高水平的疾病不确定感,影响其出院准备度。我国一线抗结核药物复治耐药率高达58.49%,明显高于初治耐药率,有学者分析主要原因是人为因素,抗痨治疗特殊性致患者耐受性和治疗依从性均较差,治疗期间缺乏有效督导导致复治耐药率极大提高[17],增加治疗难度和治疗费用,如此反复形成恶性循环。
③ 计算新解S 2的适应度函数;
① 生成模拟退火初始解S 1;
⑤ 产生伪随机数r ,并判断φ sa是否大于r .若大于,则用新解S 2代替模拟退火初始解S 1,并转至⑥;否则,则直接转至⑥;
图2 混沌模拟退火粒子群算法流程图
Fig.2 Flowchart of chaotic SAPSO
⑥ 降低温度;
⑦ 判断当前温度是否达到最低温度.若已达到,则退出模拟退火操作,并转至步骤7.若未达到,则返回①.
步骤7 种群评估与优选.根据个体的最佳适应值,选出种群的最佳位置和最佳适应值,并保存最佳适应值.
步骤8 判断算法终止.若满足最大迭代次数或目标函数减少幅度趋于收敛的预设条件,则输出拣选作业路径总距离以及对应的具体路径方案,算法终止;否则,返回步骤3.
3 仿真及分析
仿真对象为鱼骨型仓库布局,其各项参数取值参见1.1问题参数与假设条件.由于遗传算法的全局搜索能力强,所以选用GAPSO(genetic particle swarm optimization)[14]与混沌SAPSO算法对比,以验证混沌SAPSO算法所得优化结果是否具有全局最优的特点.同时,PSO算法具有收敛速度快的优点,则选用PSO算法与混沌SAPSO算法对比迭代次数与收敛速度.
仿真实验在Inter®CoreTM i5-7300HQ,CPU主频为2.50 GHz、8.00 GB内存、Windows 10操作系统下进行,并利用MATLAB 2016仿真工具编程实现.算法参数设置如表1所示.
表1 PSO、混沌SAPSO及GAPSO算法参数设置
Tab.1 Parameters of PSO, chaotic SAPSO, and GAPSO
注:S 表示初始种群规模;P c表示交叉概率;P m表示变异概率.
拣选点样本设置(以10个拣选点为例)如表2所示.
表2 10个拣选点坐标样本
Tab.2 Sample coorditions of 10 picked locations
PSO、混沌SAPSO和GAPSO算法对鱼骨型仓库布局下的拣选路径优化模型的求解结果如表3所示.从表中可以看出,混沌SAPSO算法在4种问题规模下的适应度值和收敛速度都要优于PSO和GAPSO算法,可见混沌SAPSO算法避免了PSO算法易陷入局部最优的缺点,同时适应度值比GAPSO算法所求得的结果更优.另外,混沌SAPSO相对PSO平均运行时间在问题规模为10、20、30、40时分别提高了42.01%、10.13%、4.18%、9.29%,混沌SAPSO相对GAPSO平均运行时间分别提高了2.74%、39.50%、54.46%、53.58%.
表3 PSO、混沌SAPSO及GAPSO算法的性能比较
Tab.3 Performance comparison of PSO, chaotic SAPSO, and GAPSO in 10 experiments
PSO、混沌SAPSO和GAPSO算法的适应度曲线如图3所示.从图中可以看出,在4种问题规模下混沌SAPSO算法的收敛速度都比PSO和GAPSO算法要快,同时振荡现象得到了明显改善.
混沌SAPSO算法求解所得路径解的拣选顺序如下:
10个拣选点顺序为0→10→9→8→7→6→4→3→1→2→5→0.
20个拣选点顺序为0→1→11→10→6→7→5→4→3→2→8→9→13→14→16→17→15→18→19→10→12→0.
30个拣选点顺序为0→15→16→5→12→11→9→10→8→6→7→4→3→13→14→23→24→25→22→21→27→26→28→29→30→2→1→20→19→17→18→0.
作者罗琳大量运用夸张手法,深刻、生动地揭示事物的本质,增强语言的感染力,给人以深刻的印象。从而使读者对所表达事物产生鲜明的印象,产生强烈的感情,引起共鸣。同时结合读者丰富的想象力,更好地突出事物的特征,从人物内心深处感悟角色和故事情节。
40个拣选点顺序为0→22→39→40→23→21→24→25→26→36→34→28→27→29→30→31→32→33→35→38→37→2→1→18→3→4→7→6→5→16→14→13→11→9→10→8→12→15→17→19→20→0.以10个拣选点为例,优化后拣货路径示意图如图4所示.
a 10个待拣选点
b 20个待拣选点
c 30个待拣选点
d 40个待拣选点
图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较
Fig.3 Fitness comparison of PSO, chaotic SAPSO, and GAPSO in 10 experiments
图4 10个拣选点的拣货路径示意图
Fig.4 Order picking route of 10 picked locations
4 结论
本文的研究基于鱼骨型仓库布局的拣货路径问题,对建立的拣货距离计算和拣货路径优化模型,采用混沌模拟退火粒子群算法进行求解,混沌模拟退火粒子群算法采用混沌理论对粒子群优化算法中的参数r 1和r 2进行动态调整,同时引入模拟退火算法对粒子群优化算法中的每个粒子位置局部寻优,并设置不同的问题规模,对算法的性能进行了分析.仿真结果表明,混沌模拟退火粒子群算法在适应度值、迭代次数、收敛速度、运行时间和振荡效果方面都优于粒子群优化算法和遗传粒子群算法.
本文的拣货距离计算和拣货路径优化模型可为鱼骨型仓库布局的研究提供决策参考,在后续研究中可进一步考虑鱼骨型仓库布局下的订单分批问题.
参考文献:
[1] HACKMAN S T. Allocating space in a forward pick area of a distribution center for small parts[J]. IIE Transactions, 2008, 40(11): 1046.
[2] GUE K R, MELLER R D. Aisle congurations for unit-load warehouses[J]. IIE Transactions, 2009, 41(3): 171.
[3] POHL L M, MELLER R D, GUE K R. Turnover-based storage in non-traditional unitload warehouse designs[J]. IIE Transactions, 2011, 43(10): 703.
[4] 蒋美仙, 冯定忠, 赵宴林, 等. 基于改进Fishbone的物流仓库布局优化[J]. 系统工程理论与实践, 2013, 33(11): 2920.
JIANG Meixian, FENG Dingzhong, ZHAO Yanlin, et al . Optimization of logistics warehouse layout based on the improved Fishbone layout[J]. System Engineering -Theory & Practice, 2013, 33(11): 2920.
[5] 刘艳秋, 张义华, 焦妮. 基于Fishbone的仓储货位分配优化[J]. 物流科技, 2014, 37(12): 66.
LIU Yanqiu, ZHANG Yihua, JIAO Ni. Slotting optimization allocation of storage based on fishbone[J]. Logistics Sci-Tech, 2014, 37(12): 66.
[6] CARDONA L F, SOTO D F, RIVERA L. Detailed design of fishbone warehouse layouts with vertical travel[J]. International Journal of Production Economics, 2015, 170(C): 825.
[7] 刘权, 杨鹏辉, 刘润茜, 等. 基于遗传算法的仓库布局优化模型及最优角度的确定[J]. 河北北方学院学报, 2016, 32(3): 21.
LIU Quan, YANG Penghui, LIU Runqian, et al . Optimization model of warehouse layout and determination of optimal angel based on genetic algorithm[J]. Jouenal of Hebei University(Natural Science Edition), 2016, 32(3): 21.
[8] 刘少华. 多种智能算法在鱼骨布局拣选路径决策中的比较研究[D]. 北京: 北京物资学院, 2017.
LIU Shaohua. A comparative study on mutil-intelligence algorithm in route selection of fishbone layout[D]. Beijing: Beijing Wuzi University, 2017.
[9] 陈雪. 基于改进粒子群算法的A集团自动化立体仓库的优化研究[D]. 北京: 北京交通大学, 2018.
CHEN Xue. Research on optimization of a group automated warehouse based on improved particle swarm optimization algorithm[D]. Beijing: Beijing Jiaotong University, 2018.
[10] 刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722.
LIU Aijun, YANG Yu, LI Fei, et al . Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(10): 1722.
[11] 李乐, 曾德贵. 贯通式货架系统和Fishbone布局方法结合的物流仓库布局优化[J]. 物流技术, 2015, 34(2): 201.
LI Le, ZENG Degui. Layout optimization of logistics warehouse based on drive-in rack system and fishbone plannning[J]. Logistics Technology, 2015, 34(2): 201.
[12] 张晓东, 王茜. 多目标服务工作流混合粒子群调度算法[J]. 东南大学学报(自然科学版), 2010, 40(3): 491.
ZHANG Xiaodong, WANG Qian. Hybrid particle swarm optimization algorithm for multi-objective scheduling in service work flows [J]. Journal of Southeast University(Natural Science Edition), 2010, 40(3): 491.
[13] 姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报, 2012, 39(4): 74.
JIANG Jianguo, TIAN Min, WANG Xiangqian, et al . Adaptive partcle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xidian University, 2012, 39(4): 74.
[14] 樊明, 郭艺, 贠超, 等. 基于自适应混合算法的智能存取系统动态路径规划[J]. 系统仿真学报, 2013, 25(7): 1543.
FAN Ming, GUO Yi, YUN Chao, et al . Adaptive hybrid algorithm for dynamic path planning problem of intelligent access system[J]. Journal of System Simulation, 2013, 25(7): 1543.
Order Picking Routing Optimization on Fishbone Aisle Warehouse
ZHANG Xinyan ,ZHOU Yuqing
(School of Mechanical Engineering, Tongji University, Shanghai 201804, China)
Abstract : To improve the order picking efficiency in the fishbone aisle warehouse, a chaotic SAPSO (Simulated annealing particle swarm optimization algorithm) was proposed based on the picking path distance calculation model and the picking path optimization model with the minimum distance of the picking path as the optimization objective. The chaos theory was introduced to improve the global convergence property. The SA (simulated anneaing algorithm) was adopted to make the algorithm able to jump out of the local optimization and achieve global optimization. Finally, the outperformance of chaotic SAPSO algorithm to solve order picking optimization on fishbone aisle warehouse was verified by the simulation results and the comparison with other algorithms, and it provides a new solution to order picking problem in fishbone aisle warehouses.
Key words : layout of fishbone warehouse; order picking routing optimization; chaos theory; simulated annealing particle swarm optimization
中图分类号 :TH165+.1
文献标志码: A
文章编号 :0253-374X(2019)11-1683-08
DOI: 10.11908/j.issn.0253-374x.2019.11.020
收稿日期: 2019-01-25
第一作者: 张新艳(1974—),女,讲师,工学博士,主要研究方向为物流设施规划与设计.E-mail:Alicezhang@tongji.edu.cn
通信作者: 周雨晴(1994—),女,工学硕士,主要研究方向为物流设施规划与设计.E-mail:1630921@tongji.edu.cn
标签:鱼骨型仓库布局论文; 拣货路径优化论文; 混沌理论论文; 模拟退火粒子群优化算法论文; 同济大学机械与能源工程学院论文;