许飘勇 福建龙海程溪中学 363112
长期以来,由于受应试教育的影响,不少教师重解题、轻概念,造成数学概念与解题脱节的现象。有些教师仅仅把数学概念看作一个名词,概念教学就是对概念作解释,要求学生记忆,而没有看到像函数、向量这样的概念本质是一种数学观念,是一种处理问题的数学方法。一节“概念课”教完了,也就完成了它的历史使命,剩下的是赶紧解题,造成学生对概念含糊不清、一知半解,不能很好地理解和运用概念,严重影响了学生的解题质量。那么如何搞好新课标下的数学概念课教学?
一、掌握数学概念的过程分析
掌握数学概念需要有一个过程,该过程大致可分为四个阶段:
第一阶段,概括。
“概念形成主要依赖的是对感性材料的抽象概括,概念同化主要依赖的是对感性经验的抽象概括”。师生一起通过对具体事例或已掌握知识的分析,抽出事物的关键特征,摒弃非关键特征。
第二阶段,表述。
对某类具有相同关键特征的事物命名,并使用学生能理解的方式陈述定义。
第三阶段,识别。
在给出概念表述之后,教师应该区分学生对知识是理解记忆还是机械记忆,“是根据关键特征掌握概念,还是根据无关特征回答有关概念的问题”。教师可以举出一些与教材中叙述方式类似的新例子或不同于教材中叙述方式的新例子,帮助学生真正理解概念。
第四阶段,运用。
期刊文章分类查询,尽在期刊图书馆
在知觉水平上运用是指当遇到这类事物的特例时,能立即把它看作是一类事物的具体例子;在思维水平上运用是指“新的概念或命题被类属于包摄水平较高的原有概念或命题中,或一类已知事物的一个新的不大明显的代表被识别出来(在思维水平上分类)”。数学概念教学不仅要在知觉水平上运用。
二、数学概念教学的原则
1.在体验数学概念产生的过程中认识概念。
数学概念的引入,应从实际出发,创设情境,提出问题,通过与概念有明显联系、直观性强的例子,使学生在对具体问题的体验中感知概念,形成感性认识,通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性。如在“异面直线”概念的教学中,教师应先展示概念产生的背景,如长方体模型和图形,当学生找出两条既不平行又不相交的直线时,教师告诉学生像这样的两条直线就叫作异面直线。接着提出“什么是异面直线”的问题,让学生相互讨论,尝试叙述,经过反复修改补充后,给出简明、准确、严谨的定义:“我们把不在任何一个平面上的两条直线叫作异面直线”。
2.在挖掘新概念的内涵与外延的基础上理解概念。
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:(1)用直角三角形边长的比刻画的锐角三角函数的定义;(2)用点的坐标表示的锐角三角函数的定义;(3)任意角的三角函数的定义。由此概念衍生出:(1)三角函数的值在各个象限的符号;(2)三角函数线;(3)同角三角函数的基本关系式;(4)三角函数的图象与性质;(5)三角函数的诱导公式等。可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用。
3.在寻找新旧概念之间联系的基础上掌握概念。
数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数等等,在教学中应善于寻找,分析其联系与区别,有利于学生掌握概念的本质。再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值与唯一确定的函数值对应起来;另一种高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。认真分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义本质是一致的。当然,对于函数概念真正的认识和理解是不容易的,要经历一个多次接触的较长的过程。
4.在运用数学概念解决问题的过程中巩固概念。
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的“原型”,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节。此环节操作得成功与否,将直接影响学生对数学概念的巩固以及解题能力的形成。
总之,高中数学新课标提出了与时俱进地认识“双基”的基本理念,概念教学是“双基”教学的重要组成部分,通过数学概念教学,使学生认识概念、理解概念、巩固概念,是数学概念教学的根本目的。通过概念课教学,要力求使学生明确:(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。总之,在概念教学中,要根据新课标对概念教学的具体要求,创造性地使用教材,优化概念教学设计,把握概念教学过程,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的。
论文作者:许飘勇
论文发表刊物:《教育学文摘》2015年6月总第159期供稿
论文发表时间:2015/7/8
标签:概念论文; 函数论文; 数学论文; 定义论文; 学生论文; 直线论文; 的是论文; 《教育学文摘》2015年6月总第159期供稿论文;