摘要:由于地震具有随机性、复杂性、藕联性,每次地震所产生的波形各异,因而其对建筑物的作用各不相同,所产生的破坏程度也千差万别。作为结构工程师来说,必须使这一理念贯穿于结构设计的整个过程当中,既要严格把握好设计的大原则,又要全面考虑诸多因素,最终才能保证设计的科学性和严谨性,为社会创造更多精品工程。本文对建筑抗震进行必要的理论分析,从而探索建筑的设计理念、方法,从而采取必须的抗震措施。
关键词:建筑结构,抗震设计,方法
1抗震设计思路发展历程
随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。
由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。
2现代抗震设计思路及关系
在当前抗震理论下形成的现代抗震设计思路,其主要内容是:
2.1合理选择确定结构屈服水准的地震作用
一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。
2.2制定有效的抗震措施
其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。
60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12~0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所达到的最大非弹性位移之间的关系。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力的属性。
期刊文章分类查询,尽在期刊图书馆这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。
3保证结构延性能力的抗震措施
3.1重视抗震构造措施
根据抗震概念设计原则,抗震构造措施为一般不需要计算而对结构和非结构各部分必须采取的各种细部要求。在结构设计中,设计人员依据建筑方案和建筑的设防类别、烈度、结构类型和房屋高度,来确定建筑的抗震等级,并通程序建模进行结构设计,所得的设计结果是在基于理想的假定条件下和模拟状态下的计算结果,它符合了程序的计算要求,这对于一个完整而合理的设计是远远不够的,这就需要通过构造措施来进行加强和完善。
3.2多道设防
建筑抗震结构体系包含多个具有理想延性分体系,并将具有延性的结构构件进行协同连接,避免因部分结构或构件的破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。框架-剪力结构就是将剪力墙与框架分体组合形成多肢剪力墙结构体系。设计人员在构建抗震结构体系时应考虑结构冗余度,同时布置一系列屈服区域,使主要耗能构件自身具有理想的刚度与延性,确保主体结构构件能够消耗大部分地震能量,有效避免在地震过程中出现大面积倒塌。在同一平面内主要构件达到屈服后,剩余抗侧力部件处于非弹性过程阶段,提高主体结构的有效屈服持续时间,确保主体结构的变形能力和消耗地震能量的能力。
3.3优化设计结果
在实际结构设计过程中,设计人员应当采取基于位移抗震结构计算方法,对结构设计方案展开定量性分析探讨,保证主体结构自身变形能力能符合在一般地震作用下产生变形要求。设计人员在计算主体结构承载力的同时,并实时控制在高震级作用下结构产生的层间位移角与延性位移,结合建筑构件的位移与结构变形关系,来获取主要构件的变形数值,同时按照建筑截面的应变情况与应变大小,来判断构件的实际构造要求。
3.4改良短柱的受力性能
短柱在结构设计中不可避免时,可以考虑采取措施,改良其受力特性。
(1)选用螺旋复合箍筋
螺旋复合箍筋是连续整体的钢筋组件,用螺箍绑扎成型的钢筋骨架呈众多三角形紧密结合,其稳定性突显优异,牢靠坚固,混凝土利用螺旋箍筋的整体连续性,显著提高构件的承载力及抗破坏能力,进而提高了构件的抗震承载能力。
(2)选用分体柱
短柱自身抗弯远比抗剪能力强,因此在地震过程中通常是没有充分发挥其抗弯能力时就已经发生剪坏破坏,对此,设计人员应当降低短柱的抗弯能力,使其与抗剪强度接近或者略低,这样在地震过程中,短柱先达到抗弯的屈服强度,表现其延性破坏形态。在设计过程中常用的降低抗弯强度方法,就是将柱子沿竖向设缝将其分为若干个分体柱,分体柱的配筋可在柱肢间布置一定数量的连接键,从而提高构件刚度与抗震耗能能力,常见的连接键主要包括分隔板、通缝、摩擦阻尼器等。
3.4采用高强箍筋约束高强混凝土构件
采用高强箍筋约束高强混凝土构件,可以有效的减小构件截面尺寸,从而减小了结构的自重,以达到减小地震作用的目的。研究表明,在高强混凝土中配置高强箍筋可以改善其脆性,提高配箍率和箍筋的区服强度,或者采用复合箍筋,可以提高混凝土的变形能力。
结语
从现代抗震设计思路提出至今,世界各国的抗震学术界和工程界又取得了许多新的成果,比如进行了大量钢筋混凝土构件的抗震性能试验,通过迅速发展的计算机技术编制了准确性更好的非线性动力反应程序;在设计方法上也不再拘泥于以前单一的基于力的传统抗震设计方法,开始尝试基于性能和位移的新的抗震设计理念。在这样的环境中,我国的抗震设计思路也应该在完善自身不足的同时,不断向前发展。
参考文献
[1]罗峰.浅谈建筑结构设计的抗震设计[J].江西建材,2015,02:38.
[2]方凡.小议建筑结构抗震设计[J].江西建材,2015,02:43-44.
论文作者:闫威利,张攀
论文发表刊物:《防护工程》2019年10期
论文发表时间:2019/8/16
标签:结构论文; 弹性论文; 位移论文; 延性论文; 构件论文; 能力论文; 塑性论文; 《防护工程》2019年10期论文;