基于卷积神经网络的空中目标粗分类研究
胡大帅,梅 卫,冯小雨
(陆军工程大学石家庄校区,石家庄 050003)
摘 要: 空中目标的准确分类与识别是防空作战的关键环节。将卷积神经网络应用到空中目标粗分类任务。实验基于AlexNet 卷积神经网络模型,并利用建立的小规模数据集进行微调训练,从而提取目标特征并进行分类识别。再和利用HOG 特征的分类方法进行对比实验,发现前者具有较大准确率的提升。得出利用卷积神经网络提取的特征具有更强大的表示目标的能力,为进一步实现跟踪空中目标打下实践基础。
关键词: 空中目标分类,卷积神经网络,特征提取,防空作战
0 引言
在防空作战过程中,首先需要解决的问题就是对来袭目标快速准确地分类和识别。空中目标识别是自动目标识别技术的一个重要应用领域[1]。分类可分为粗分类和细分类,比如识别飞机和鸟类等的类间分类就是粗分类;识别飞机大类中具体飞机型号的类内分类就是细分类。粗分类是细分类的重要前提条件。传统的空中目标识别方法大多采用人工设计特征,比如基于角点、目标块特征、SIFT 特征和HOG 特征等,在过去的一段时间内这些特征被广泛应用,取得了一定的分类识别率的提升。Lowe.D.G 提出提取目标图像的SIFT 特征,该特征对于两幅图像存在旋转、尺度缩放、亮度变化等是不变的,且对视角变化、仿射变换、噪声也有一定程度的稳定性[2]。李菲菲等人提出基于SIFT 特征的图像词袋模型来进行场景分类和目标分类,取得了较好的分类效果[3]。
但是这些方法在应对愈加复杂的空中环境的时候识别效果会大打折扣,比如目标的快速移动、遮挡等,并且为了应对不同问题而设计不同的特征的方法人工成本太大。空中目标的识别任务面临着严峻的考验。
心肌梗死发生可导致心室异常扩大,LVEF低于55%时预示心室功能降低。FS是反映左室收缩功能的指标,FS降低预示心功能受损[18]。本研究中并发恶性心律失常患者的LVEF、FS低于未并发恶性心律失常患者。这一结果提示,心功能较差会增加AMI患者并发恶性心律失常的风险。
近年来兴起的神经网络和深度学习技术,在很多行业都掀起了新一轮的技术浪潮。计算机视觉领域里目标识别与跟踪、自动驾驶、视频监控等在深度学习技术的推动下都得到了巨大的进步,许多问题迎刃而解。比如著名的ILSVRC 计算机视觉大赛的记录一遍又一遍地被深度学习技术所刷新。
本文将深度学习技术应用到空中目标的分类识别任务中。利用深度学习技术中的卷积神经网络进行仿真实验,取得了较高的分类识别率。
1 神经网络与深度学习
神经网络的诞生来源于对人类大脑的研究。众所周知,成人大脑中的神经元有1 000 亿之多,它们承担着大脑内部的信号传输。生物学家于1904 年就揭晓了神经元的结构,随后McCulloch 和Pitts 参照神经元的结构设计出了著名的MP 模型,人工神经网络自此诞生。经过几十年的不断发展,人工神经网络的技术不断成熟,网络结构不断多样化,但万变不离其宗,图1 展示了神经网络的基本结构。
图1 神经网络结构图
以信息技术与教育融合为标志的教育信息化引领了教育形式和人才培养模式的变革,使教育迈入了全新的信息时代,教育信息化已成为世界越来越多国家提升教育水平的战略选择。近五年的地平线报告中提到的新技术主要聚焦在创客空间、自适应学习、人工智能、物联网等方面,教育信息化正在呈现出智能化、云计算、社会化、嵌入化、碎片化、游戏化、移动化、混合化的趋势。
该混淆矩阵的大小为5*5,每一行以及每一列都对应着测试数据集的5 类目标。m 行n 列的数字表示将m 行对应的类别分类成n 列对应的类别的个数。例如第1 行第1 例数字为29,表示将第1 行bird 类别分类成第1 列bird 类别的个数为29,即29个分类正确,一个分类错误的是将bird 类别分类成了plane 类别。
——大英博物馆长期饱受外界批评,其丰富文物不过是殖民时代的战利品,且拒绝归还给各个受害国。近期,大英博物馆发起讲座活动,试图为其自辩
找到与产品有高契合度的知名人物帮助用户做消费决策,不是所有人都有机会去实际体验产品。用户沉浸度越高,越容易对视频中介绍的物品感兴趣,这样也利于视频展示的产品销售。例如:爱开箱短视频节目。每期有一位开箱达人给大家介绍一款新奇的好物,说明自己的使用感受,满足用户好奇心。既保证视频高可看性又实现高转化率。
2 AlexNet 模型
bird068 被预测成plane 的得分最高,因此,plane 就是它最终的分类结果,但是它被预测成bird的得分和预测成plane 的得分相差并不多。查看bird068 这张样本图片发现原图是一群展翅飞翔的大雁,bird068 如图6 所示。该图片中的物体具有飞机的外形轮廓,这也就解释了为什么该样本被分类成bird 和被分类成plane 的分数会非常接近。接着查看missile037 这张样本图片,发现原图是一个美国战斧式巡航导弹,如图7 所示。它和飞机的接近程度非常高,并且具备很多飞机的特征,因此,被分类成plane 类别。
图2 AlexNet 模型结构图
AlexNet 模型当时是在两台配备有英伟达GTX 580 显卡的机器上经历了长达6 天的训练,最终赢得了冠军。这也解释了为什么在图2 中会有两个流程图。以一个流程图为例,AlexNet 有5 个卷积层和3 个全连接层共8 层,在每个卷积层中又包含了ReLU 激活函数以及局部响应归一化和池化处理。如果去掉任何一个卷积层的话,分类识别效果都会下降。有别于一般的网络采用sigmoid 和tanh 函数作为激活函数,AlexNet 采用ReLU 作为激活函数,不仅缓解了梯度消失的问题,同时训练速度也有了较大的提升。
最初的神经网络虽然简单,但却可以解决诸如函数拟合、预测分类等简单的任务。当遇到复杂的问题或者需要更深层的网络结构的时候,神经网络的弊端也就慢慢暴露了出来。不仅理论分析的难度加大,训练的过程十分复杂,计算量也巨大。在Vapnik等人发明SVM 后,神经网络慢慢陷入了沉寂。
3 迁移学习
迁移学习就是从现有的数据中迁移知识,将从一个数据库中学习到的丰富的知识运用到新的问题中。AlexNet 模型作为一个成熟的预训练网络,使用了上百万的图片进行了长时间的训练,用来分类1 000 种目标,它已经学到了丰富的特征,具备了强大的特征表示能力。因此,可以利用迁移学习,将AlexNet 网络模型经过小规模数据集的微调训练后,迁移到空中目标分类任务中。
图4 展示了训练过程中一些训练数据的实时动态图,包括训练和测试分类准确率(Accuracy)、训练和测试损失(Loss)等。
本文利用AlexNet 模型作为迁移学习的基本网络。原网络可以实现1 000 类的目标分类,本文是针对5 类目标的分类任务。因此,只需将该网络的最后一个有1 000 个输出(即1 000 个神经元)的全连接层修改成有5 个输出(即5 个神经元)的全连接层,将最后的分类层修改成本文的5 类目标分类层即可,最终形成新的网络模型。然后同样基于任务的需要以及数据集的规模,设置训练的超参数,其他参数一律按照原网络的参数设置。接下来利用分类好的训练数据集进行微调训练,经过短暂的训练后训练误差达到收敛,停止训练并用测试数据集进行测试验证。
例如一只纯色表盘的手表,除了时针和分针,没有其他装饰,这种情况下,指针的走动特点就可以领略到该款手表的个性。由于间隔一段时间才走动,所以这个指针的走动在整个过程中就非常明显了,如何将指针的走动过程设计得即简单化又可以受得起冲击呢?现在的城市生活节奏快速,生活空间也越来越狭小。工作、人际关系甚至连周围的物体都会给人带来多多少少的压力感,我们也希望手表可以帮我们承担起一部分释放压力的作用,就是希望它可以承受更大的冲击。
4 仿真实验
4.1 实验准备
本文利用matlab 软件进行仿真实验,实现了空中目标的粗分类。将空中目标分为bird、four-rotor aircraft、missile、paraglider、plane 五大类。每类各从互联网收集了100 张不同的图片,总共500 张图片作为微调训练和测试使用。并根据AlexNet 模型输入层的输入尺寸将所有图片进行了统一尺寸处理,然后以0.7 的比例,随机将数据集中的每一类都分成70 张训练和30 张测试数据集,最后汇总成350 张的训练和150 张的测试数据集,并用每一类的类别名称作为分类标签。图3 为随机显示的20 张数据库图片。
图3 随机显示20 张数据库图片
4.2 实验过程
利用迁移学习,不仅克服了训练数据不足的问题,同时也大大减少了训练的时间,提高了解决问题的效率,最重要的是利用预训练网络所学习到的丰富的特征来表示新的分类目标,经实验发现,效果显著。
4.3 实验结果分析
(三)确立社会主义市场经济体制的基本框架和社会主义初级阶段的基本经济制度,明确了建设社会主义法治国家、发展社会主义民主政治制度的要义,丰富和发展了中国特色社会主义制度
图4 训练过程示意图
从图中可以发现随着迭代(Iteration)次数的增加,训练和测试的准确率先上升最后趋于稳定,并且测试准确率达到了97.33%,也就是说在150 个测试数据集里有145 个被正确分类,有5 个被错误分类,分类准确率相当高。从图中还可以看到随着迭代次数的增加,训练损失不断下降最终收敛到很小的值。
可视化后的测试数据集的分类结果以及对应标签的混淆矩阵如图5 所示。
图5 可视化的分类结果混淆矩阵
直到2006 年,加拿大多伦多大学教授Geoffery Hinton 在《Science》上发表了论文,提出了“深度信念网络”、预训练过程和微调等技术手段,对整个网络进行优化训练,突破了多层神经网络的技术瓶颈,将这些技术统称为深度学习。此后,深度学习技术又一次掀起了机器学习的浪潮。目前深度学习的模型主要有多层感知机、卷积神经网络、循环神经网络等。
从图5 中可以得到主对角线上的数字全部表示分类正确的个数,而其他位置的数字则表示分类错误的个数。所以总共有5 个目标被错误分类,分别为将1 个bird 类分成了plane 类,将1 个missile 类分成了plane 类,将1 个plane 类分类成了bird 类和将2 个plane 类分类成了four-rotor aircraft 类。
针对5 个分类错误的样本,分别在数据集中找出了对应的图片,并计算出每一个样本的分类得分,如表1 所示。表1 中的第1 列表示分类错误的5 张图片,第1 行表示5 个类别,表中的数字表示某张图片分类成某类别的具体得分,以概率的形式表现。
表1 误分类样本每类得分
AlexNet 模型是卷积神经网络模型的一种。2012年Alex Krizhevsky 带着由他设计的AlexNet 模型参加ImageNet 竞赛并获得了冠军,自此AlexNet 一举成名。同时也证明了卷积神经网络在复杂模型下的有效性,以及大数据+复杂网络+GPU 训练这一解决问题方式的有效性,具有里程碑式的意义。此后,不断有层数更多的、结构更加复杂多样的网络模型被提出,比如VGG、GoogleNet 等。图2 是AlexNet 模型结构图[4]。
图6 样本bird068
图7 战斧式巡航导弹
通过以上分析发现虽然利用迁移学习得到的分类准确率非常高,但对个别难分样本的分类会存在误差。因此,为了获得更高的分类准确率,有必要建立更大的数据库去重新训练网络,同时也有必要增加人为建立数据集标签的准确性和分类的细致性。
4.4 对比实验
本文为了对比利用卷积神经网络提取特征的分类结果和利用HOG 特征分类的结果,在完成上述工作后又提取了相同数据集的HOG 特征用于分类。实验分类结果的混淆矩阵如图8 所示。
在糖尿病微血管慢性并发症中,糖尿病肾病较为常见,已成为糖尿病及终末期肾病的主要死因。现阶段临床中针对糖尿病肾病高的治疗主要采用血管紧张素转化酶抑制剂(ACEI)及血管紧张素受体拮抗剂(ARB)进行治疗,但疗效不佳[1]。本研究探讨羟苯磺酸钙治疗糖尿病肾病的疗效及安全性,现作如下报道。
图8 HOG 特征分类结果混淆矩阵
利用HOG 特征进行分类的准确率只有65.33%,并且每一类的分类效果都不理想,说明利用HOG特征表示数据集中的目标存在许多不足之处,也从侧面证明了卷积特征具有更加强大的特征表示能力。
5 结论
本文利用迁移学习将AlexNet 卷积神经网络模型应用于空中目标的粗分类问题,分类准确率高达97.33%。同时利用HOG 特征进行对比实验,分类效果却不理想。从正反两方面证实了卷积特征具有更加强大的特征表示能力,为下一步自行设计卷积神经网络模型并运用规模更大的数据集训练,最终实现空中目标跟踪打好理论和实践基础。
参考文献:
[1]朱旭锋,马彩文,刘波.采用改进词袋模型的空中目标自动分类[J].红外与激光工程,2012,41(5):1384-1387.
[2]LOWE D. Distinctive image features from scale-invariant keypoints[C]//UCV,2004.
[3]Fei-Fei L,PERONA P. A Baycsian hierarchical model for learning natural scene categories[C]//Proc CVPR.2005.
[4]KRIZHEVSKY A,SUTSKEVER I,HINTON G. ImageNet classification with deep convolutional neural networks[C]//NIPS,2012.
[5]郑昌艳,梅卫,王刚.基于深度卷积神经网络的蛇形机动航迹图像识别[J].火力与指挥控制,2016,41(5):66-70.
Research on Air Target Coarse Classification Based on Convolutional Neural Network
HU Da-shuai,MEI Wei,FENG Xiao-yu
(Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China)
Abstract: The accurate classification and identification of air targets is one of the key links in air defense combat. The author applies convolutional neural network to air target coarse classification task.The experiment is based on the AlexNet convolutional neural network model and the model is fine tuned by the small scale data set established by the author and then extracts target features and classifies them. Compared with the classification method of HOG features,we found that the former has an incease of higher accuracy. Drawing a conclusion that the features extracted by convolutional neural network has a more powerful ability of representing target which lays a practical foundation of tracking air target.
Key words: air target classification,convolutional neural network,feature extraction,air defense combat
中图分类号: TJ765;TP391
文献标识码: A
DOI: 10.3969/j.issn.1002-0640.2019.08.023
引用格式 :胡大帅,梅卫,冯小雨.基于卷积神经网络的空中目标粗分类研究[J].火力与指挥控制,2019,44(8):121-124.
文章编号: 1002-0640(2019)08-0121-04
收稿日期: 2018-05-12
修回日期: 2018-08-18
作者简介:
胡大帅(1994- ),男,江苏东海人,硕士研究生。研究方向:电视跟踪。
梅 卫(1971- ),男,安徽黄山人,副教授,硕士生导师。研究方向:火力与指挥控制、信息融合、深度学习等。
Citation format: HU D S,MEI W,FENG X Y.Research on air target coarse classification based on convolutional neural network[J].Fire Control&Command Control,2019,44(8):121-124.
标签:空中目标分类论文; 卷积神经网络论文; 特征提取论文; 防空作战论文; 陆军工程大学石家庄校区论文;