摘要:本文主要针对高压摆喷技术在堤坝堤基防渗的施工展开了探讨,通过结合具体的工程实例,对高压摆喷工艺的参数作了详细的阐述,并对相应的防渗施工作了系统的分析,以期能为有关方面的需要提供有益的参考和借鉴。
关键词:高压摆喷;堤坝堤基;防渗;探讨
堤坝作为防洪的水利设施,对其的堤基防渗工作要有高度的重视,并以此来保障堤坝在防洪抗险中的稳固工作。而由于堤坝一般处于涉水环境,在堤基防渗的施工中存在着一定的难度,因此,需要我们采取有效的施工技术,这就使得高压摆喷技术得到了广泛的应用。基于此,本文就高压摆喷技术在堤坝堤基防渗的施工进行了探讨,相信对有关方面的需要能有一定帮助。
1 工程概况堤基防渗处理工程是本次加固的主要工程之一,根据是地质勘探资料中堤基渗流通道③2 层土的分布,运用高压摆喷施工技术,沿上游堤肩堤身轴线方向布置垂直截渗墙(如图1)。
图1 高压摆喷截渗墙布置图(56K+500 处)2 高压摆喷工艺参数2.1 设计要求2.1.1 施工工艺喷浆工艺采用三重管法,施工工艺为:利用钻机引孔至设计深度后,将喷具下至设计深度,控制喷嘴摆角,通过高压水切割造槽,压缩气保护水流射程,经过切割、搅拌、置换等工序,利用水泥浆液充填槽孔,形成水泥土固结体防渗墙。
2.1.2 墙体设计指标截渗墙墙体厚度不小于10cm;墙体嵌入③2 层土的上层土100cm,下层土50cm,在施工过程中,依据地质资料,实时调整;墙体渗透系数为A×10-6cm/s(1≤A≤9);28d 抗压强度不小于1.0MPa。
2.2 施工工艺参数的确定根据规范要求,在高压摆喷灌浆作业开始前,应选择地质条件具有代表性的地段进行现场灌浆试验。经讨论研究,选择大堤桩号40K+350~40K+450 和52K+034~52K+134 共计200m 地段进行高压喷射灌浆的现场工艺试验,前段代表大堤的综合情况,后段代表大堤历史决口处。
根据工艺试验结果,综合经济技术指标,最终确定施工工艺参数采用:孔距1.4m,水压大于40MPa,气压0.5~0.7MPa,浆压不小于1.0MPa,提速15cm/min,摆速15 次/min,水灰比1.0,喷射角40°(±20°)。
3 截渗墙质量控制3.1 材料、浆液质量控制浆液采用P.O42.5 级普通硅酸盐水泥,制浆水使用湖水。经取样检验,原材料的各项指标均满足相关要求。施工时按确定的水灰比用机械搅拌水泥浆液,水泥均匀放料,浆液使用前过筛。定期用比重称检测水泥浆液密度,及时调整浆液浓度,确保浆液质量。
3.2 施工放样在高压摆喷墙施工轴线上用钢尺测放钻孔位置,孔位放样精度应满足设计要求。绘制摆喷钻孔平面布置图,用竹签等标定孔位。
3.3 钻孔质量控制高压摆喷钻孔由地质钻机进行,根据桩位平面布置图进行钻孔定位,钻进过程中泥浆护壁,确保孔形完成不坍塌,满足摆喷施工需要。钻孔前每间距30m 设一个先导钻孔,先导钻孔采用全断面取土样,以进一步探明堤基③2 层分布情况,再根据实测作业面高程,控制施工高压摆喷墙顶、墙底高程。
3.4 高喷质量控制高压摆喷施工是由多台机械设备联合作业,施工时各设备操作人员之间要统一口令,相互沟通,按确定的技术参数控制设备的运行参数。喷射管喷嘴下设至高压摆喷防渗墙底位置试喷,调整高压水、注浆压力、空压机供气压力、摆角、提升速度等达到试验确定的参数要求,开始摆喷提升作业,施工中控制施工水泥浆液比重、注浆压力等偏差满足规范要求。喷射管喷嘴提升超过设计防渗墙顶高程后,停止摆喷作业,提出喷管,并对已完成的高压摆喷桩上部及时回灌。摆喷作业完成后,利用后续孔冒浆连续回灌至已喷孔内封孔,直到浆液面稳定为止,封孔后再对浆液收缩留下的空孔部分利用施工冒浆进行二次复封。
4 截渗墙质量检测高压摆喷截渗墙墙体埋深较大,且墙体较薄,工程实体质量检测具有一定难度。故本工程采用多种检测方法相结合,以确保检测结果准确。
4.1 常规检测4.1.1 检测内容及方法(1)墙体最小厚度及外观质量:探坑检查。
(2)墙体深度:钻探法。
(3)墙体水泥土力学性能及抗渗指标:钻芯法。
4.1.2 检测结果(1)墙体高度采用地质工程钻机钻取芯样共计14 孔。从取芯结果来看,③2 层透水层芯样总体完整、均匀。墙体实测高度1.0~10.3m,满足设计要求。
(2)水泥土无侧限抗压强度在墙体芯样上取样进行水泥土无侧限抗压强度指标检测。每孔芯样各取1 组,每组3 个,共42 个试样,单个试件抗压强度值为1.63~10.66MPa,全部满足水泥土28d 抗压强度≥1.0MPa 的设计要求。
(3)渗透系数每孔芯样各取1 组进行水泥土渗透试验,每组6 个,共84 个试样。试件为圆台体,上口直径70mm,下口直径80mm,高度30mm。渗透系数检测值为1.18×10-6~7.28×10-6cm/s,全部满足设计要求。
(4)墙体厚度及外观质量为了直观检查截渗墙墙体,高压摆喷灌浆试验段局部将墙体施工至地表,采用探坑法检查墙体成型厚度及搭接质量。共检测7 个部位,探坑长度为3~4m,墙体出露高度约2m 左右。检查结果表明:检测部位墙身外观质量及搭接状况良好。墙体厚度实测值10~50cm,均满足设计要求。
4.2 探地雷达检测2013年1月23日,省水利科学研究院对大堤桩号40K+350~40K+380、40K+400~40K+450、52K+043~52K+083、52K+083~52K+106 段截渗墙进行了探地雷达检测。
4.2.1 工作原理探地雷达系统利用天线向被检测物发射宽频带高频电磁波,电磁波信号在介质内部传播遇到介电差异较大的介质界面时会反射并返回,反射回的电磁波被与发射天线同步移动的接收天线接收后,由雷达主机精确记录下反射回的电磁波的运动特征,再通过信号技术处理形成全断面的扫描图。
截渗墙存在缺陷时,缺陷处与截渗墙体之间存在一定的电性差异,研究接收到的电磁波双程旅行时间、波形与波幅变化规律,就可以判断是否存在空洞等缺陷,从而研判地下介质的连续性等性质。见图2。
图2 探地雷达工作原理图4.2.2 检测设备采用RANDAN6.6 软件进行后处理,最后形成雷达图像用于辨别异常及解释结果。
4.2.3 检测结论检测结果表明:截渗墙墙体总体连续、完整,不存在空洞、错断现象。
以52K+043~52K+083 段检测结果为例,截渗墙与上覆土层在雷达波形图上有较为明显的分界线,表现为截渗墙反射信号较强且较连续,而上覆土层由于经过摆喷机械施工扰动,反射信号相位倾斜度较大且反射相对较弱。
图下方的方框标注区域即为截渗墙体部分,可看出雷达波形总体变化不大,无抛物线状圆弧雷达波形等明显特征,同相轴基本连续,表明截渗墙墙体总体连续、完整,不存在空洞、错断现象。见图3。
图3 52K+043~52K+083 区域探地雷达剖面图4.3 物探检测4.3.1 检测方案根据工程的实际情况和测试要求,在截渗墙墙体轴线部位采用高密度地震映像法测定墙体的连续性,采用多道瞬态面波测定墙体的顶、底埋深。
另外,在墙体轴线外侧3m 处抽测部分土体,绘制高密度地震映像解译剖面图,以与截渗墙墙体部位的波形进行对比。
4.3.2 检测设备北京市水电物探研究所研制的SWS-5 型多波列数字图像工程勘探与工程检测仪。
4.3.3 检测结论检测结果表明:截渗墙墙体连续性较好,墙体顶、底高程与原始施工记录基本吻合。
以大堤桩号40K+363~40K+463 段为例,检测情况如下:(1)地震映像比较轴线处与轴线外的地震映像图,大致有如下特征:轴线处高密度地震映像分布比轴线外均匀且绝大部分比较连续,说明高压摆喷截渗墙体连续性较好;通过轴线东侧3m 处的高密度地震映像图和轴线处的影像对比,以40K+413 处为界,往断面号变小方向面波相位增多,这是由于面波在传播过程中遇有较高密度介质产生转换波且在该介质中面波的高阶振型发育,反映了土体强度较轴线外高;往断面号变大方向面波相位虽多,但比较杂乱,该处曾进行过充填灌浆加固,详见图4;轴线处40K+376~40K+388 部位地震映像图中上部80ms 处面波振幅减小,40K+392~40K+397 部位地震映像图在200ms 处面波振幅减小,说明上述两段墙体中存在低速体分布,可能是由于原有土层内碎石分布较多所致。
图4 40K+363~40K+464 段截渗墙高密度地震映像解译剖面图(2)面波及频散曲线本段在40K+439.2 附近采用多道瞬态面波测定墙体的顶、底埋深。频散曲线详见图5。
根据图5,在40K+439.2 处高压摆喷截渗墙墙顶埋深13.5m,墙底埋深24.0m,该段地面高程18.6m,对应的墙顶、底高程为5.1m、-5.4m;根据施工原始记录,该段墙顶、底高程分别为5.4m、-4.2m,检测成果与施工单位提供的资料基本吻合。
图5 40K+439.2 处频散曲线图5 截渗效果为了验证截渗墙的实际效果,在54K+300 断面设置2 根测压管测量截渗墙前后③2 透水层的水头变化,其中,1 号测压管位于截渗墙上游侧,2号测压管位于截渗墙下游侧,具体布置如图1 所示。部分观测数据如表1所示。
表1 54K+300 断面1、2 号测压管部分观测数据
从观测数据可见,截渗墙前后③2 层的水头有明显的下降,平均降幅在0.3m。观测数据表明:截渗墙对③2 透水层起到了较为明显的截渗作用。
6 结语综上所述,高压摆喷技术由于自身具有的独特优点,在堤坝的堤基防渗处理中有着广泛的应用。为了保障堤坝的长期稳定使用,就需要更为有效率的应用高压摆喷技术对堤基防渗做好施工,以保障堤防工程堤基防渗的处理质量。
参考文献:[1]张国献.高压摆喷灌浆技术在水闸基础防渗加固中的应用[J].陕西水利.2014(01).[2]游萍.高压摆喷灌浆技术在大坝防渗加固中的应用[J].四川水利.2009(02).
论文作者:徐建忠
论文发表刊物:《基层建设》2015年5期供稿
论文发表时间:2015/9/25
标签:墙体论文; 高压论文; 浆液论文; 轴线论文; 堤坝论文; 防渗论文; 映像论文; 《基层建设》2015年5期供稿论文;