摘要:水工隧洞是水利工程建设中为满足导流、泄洪、灌溉、引水、排沙等需要修建的水工建筑物。按用途可分为引水洞,导流洞,泄洪洞,排沙洞,放空洞等。随着中、大型水利项目的开工,越来越多的长大水工隧洞被相继开挖,而测量工作是水工隧洞顺利贯通的重要保障。在设计阶段,要进行洞外控制网的布设;在施工阶段,要复核原有洞外控制网是否满足贯通要求,隧洞开挖时要布设隧洞内的施工控制网。
关键词:水利工程;长隧洞测量;贯通误差
隧道工程贯通测量是为获取实际的贯通误差值,作为下一步调整施工中线的依据而进行的测量。
一、隧道工程贯通测量应注意的方法
1.隧道贯通误差的测定与调整。隧道贯通后,应进行横向贯通误差,纵向贯通误差及高程贯通误差测量。贯通误差的测量可采用中线贯通法或导线法进行测量,其在贯通面上的测量误差不应大于规范允许值。贯通测量完成后,应编写贯通测量报告及对作业队及工班进行贯通误差调整的技术交底,并在剩余的二衬施工测量逐环将贯通误差予以消除。贯通误差的调整可以采用调整二衬结构或调整线路方式,由于施工要求较高,隧道不允许采取调整线路的方法进行贯通误差的调整,所以应在施工过程中加强测量精度控制,保证贯通误差在允许范围内。隧道贯通后,应及时地进行贯通测量,测定实际的横向、纵向和竖向贯通误差。若贯通误差在容许范围之内,就可认为测量工作已达到预期目的。
2.贯通误差和控制测量精度。从工程全局出发,研究确定超长隧道横向贯通误差和高程贯通误差的允许值,在分析研究地面、隧洞、斜竖井等测量环节可能精度前提下,推算分配其地面控制网、隧洞导线、联系测量的精度指标,基于分项控制建立贯通误差总合模型,确定贯通精度要求和总体精度控制原则,为合理确定各级控制测量精度提供依据。
3.贯通测量地面控制网优化与联合数据处理技术。在分析原地面控制测量方案和成果基础上,针对项目地形地貌特征,优化GPS控制网测量方案,研究长距离GPS网局部加密精密导线小网可行性及联合数据处理方法,实现最长相向开挖段洞口联系边方向中误差优于±1.0秒,保证重要开挖洞口控制点的密度和精度。
4.复杂地形关键段地面高程测量。整体隧道高程控制测量的精度,影响高程贯通误差。因此项目的整体高程测量要针对穿越复杂地形关键段、水准测量直接对接困难、精密水准绕行路线超长,不能保证高程精度等问题,研究精密水准穿越路线及精密光电三角高程传递等关键技术,保证贯通高程精度。
二、隧洞贯通误差
1.隧洞贯通误差的来源。目前,隧洞洞外平面控制测量一般采用GNSS网取代传统的导线网及三角形网,洞内平面控制测量一般采用导线网或边角网;洞内、洞外高程控制测量,一般采用精密电子水准测量或光电测距三角高程测量进行。隧洞测量时,由于受地面、地下控制测量误差的影响,使得隧洞贯通面的中线与设计产生偏移,即产生贯通误差。隧洞的贯通误差包括横向、纵向及竖向三个方向的贯通误差。按来源环境又分为洞外贯通误差及洞内贯通误差。纵向和横向贯通误差主要由洞外GNSS网误差、联系测量误差及洞内导线测量误差引起。其中,纵向贯通误差主要由洞外的GNSS网测量及洞内的测距引起,对工程贯通影响不大,也能较好地控制。竖向贯通误差主要由采用精密电子水准测量时水准仪的精度、大气折光等因素引起或采用三角高程测量时的照准误差、折光系数误差及地球曲率影响引起,由于水工隧洞的特殊性,如竖向误差超出限差,会引起水流变缓或出现倒坡,导致隧洞的过流及承压发生改变,甚至使隧洞不能顺利贯通。横向贯通误差主要由洞外GNSS网测量、联系测量及洞内导线测量引起,主要误差有测距误差、测角误差、垂线偏差、对中误差及旁折光误差。其中,测距误差对横向误差影响极小,测角误差和对中误差对横向误差影响较大,隧洞的主支洞高差较大时,垂线偏差对方位角有影响,而气象因素引起的旁折光对控制网的横向误差也有一定影响。
2. 隧洞贯通误差值得确定。一般情况,根据隧洞相向开挖长度(包括支洞长度)来确定横向、纵向及竖向相应的贯通中误差值的大小,最新的《水利水电施工测量规范》(SL52-2015)是国内首个对长度超过20km的隧洞贯通精度做出明确要求的规范,给出了相向开挖长度50km以下水利工程隧洞贯通容许误差值的分配。如相向开挖长度大于50km的隧道则需做专门技术设计。当在主斜洞内贯通时,纵向误差按横向误差值的大小确定,对于上下两端相向开挖的竖井,其极限误差值不超过±200mm。横向和纵向贯通容许极限误差取值相同,竖向贯通要求极其严格,极限误差值为横向及纵向贯通极限误差值的三分之一左右。进行隧道贯通测量设计时,一般取极限误差的二分之一作为贯通面上的贯通中误差。在《水利水电施工测量规范》(SL52-2015)中,根据隧洞相向开挖的长度,横向、竖向及纵向的贯通容许极限误差值和贯通测量中误差值按权函数法进行分配并做了适当的调整。隧洞开挖时各项贯通中误差分配值如表1所示。
表1 水工隧洞开挖贯通中误差分配值
从表1可以看出,地面、地下及贯通面的中误差分配值满足式(1):
(1)
如顾及联系测量时,则贯通面的中误差分配值满足式(2):
(2)
3.减小贯通误差影响的方法。对于洞外GNSS网,通过优化控制点布设、采用双频三星接收机、进行星历预报、增加观测时段、增长观测时间和利用精密星历解算等措施,可大大减小洞外GNSS网对横向贯通误差的影响。水工隧洞断面一般较小,测量时要面临高温、高压、高湿度及多粉尘的影响,洞内平面控制只能布设成边长短而狭长的导线网,测量时可通过增加照明度、通风降尘、保持仪器干燥、严格规范操作、增加检核条件等方法减小贯通误差影响。操作仪器时,每站限差检核合格后再搬站。为增加检核条件,洞内平面控制网可布设为洞内交叉双导线网或自由测站边角交会网;布点时尽量避开洞壁侧边,减小旁折光的影响。联系测量时洞外高等级控制点至少有一点与洞内通视,高差不要相差太大,定向边应有足够的长度,以减小洞内横向贯通误差的影响。为避免施工的影响,洞口的控制点应布置在不受施工影响的位置,并埋设强制对中观测墩。洞内导线点分别埋设贯通用的基本导线点和放线用的施工导线点,基本导线的边长应尽量的长且近似相等,施工期间应定期检核基本控制点的精度。当隧洞单向开挖长度大于8km时,加测陀螺方位角能减小横向误差的影响。光电测距三角高程观测时,采用对向观测,能有效的消除球气差的影响;往返测选取气象条件相近的时段进行,能削弱大气折光的影响。
三、高程控制测量
由于该工程地处高原、地形复杂,洞外,洞内高程控制测量采用三等光电测距三角高程测量代替水准测量。洞外测量路线满足交通便利、尽量利用平面控制点,洞内高程控制点与平面控制点共用。测量时,采用对向观测方法进行,以消除大气折光和地球曲率对高差的影响。平差计算时,要进行气象、边长投影、边长加乘常数等项改正。洞外,洞内高程测量误差对竖向贯通误差的影响按下列公式计算:
其中;
式中:mh外,mh内———洞外、洞内高程测量中误差;
MΔ———洞外、洞内每千米高差中数的中误差;
L外,L内———洞外、洞内两洞口间的线路平距长度,km。该工程洞外高程控制测量平距长度为12km,洞内高程控制测量平距长度为10km,三等每千米高差中数中误差为6mm,代入上式得洞外竖向贯通中误差mh外=±20.8mm,洞内横向贯通中误差mh内=±19.0mm,竖向贯通中误差Mh=±28.2mm。其中,洞外竖向贯通中误差值稍大于容许值±20mm,但小于容许极限误差值±40mm,所以,洞外、洞内高程控制测量可用光电测距三角高程测量代替相应等级的水准测量进行。
水利工程隧洞贯通测量是按设计的要求,将洞外控制点引测至洞内,并按照贯通误差的估算,在建立地面和地下平面及高程控制网的前提下进行施工放线及指导施工开挖。
参考文献:
[1]王永彰,浅谈水利工程长隧洞贯通测量方法研究.2017.
[2]刘晓明,特长输水隧洞工程设计研究.2016.
论文作者:王新尧
论文发表刊物:《基层建设》2018年第22期
论文发表时间:2018/9/10
标签:误差论文; 测量论文; 隧洞论文; 高程论文; 洞内论文; 洞外论文; 横向论文; 《基层建设》2018年第22期论文;