浅谈如何降低输电线路雷击跳闸率论文_王锋

浅谈如何降低输电线路雷击跳闸率论文_王锋

摘要:输电线路是电力系统能量传输的重要组成部分,但由于线路多敷设在高山等偏远地区,易遭受雷击造成跳闸事故,严重影响电网安全运行和电能的持续供应。输电线路由于覆盖范围大,需要跨越多种不同的区域。在雷击多发区域,输电线路易受到雷击影响发生跳闸事故,输电的可靠性与连续性因此会受到影响。因此有必要结合输电线路雷击跳闸事故的特点采取相应的防雷措施,保护输电线路以免发生损坏,将因雷击产生的经济损失控制在最低水平。

关键词:输电线路;雷击跳闸率;防范措施

引言

通过近几年输电线路跳闸停电事故调研发现,雷击在输电线路跳闸事故中占较大比重,且大多难于防范。国内各地区电网在输电线路防雷实践应用中大多采用避雷线、装设避雷针等单一防雷措施,防雷效果有待进一步检验。有效筑牢输电线路防雷水平,减少雷击停电事故,确保输电线路安全稳定运行,具有重要意义。

1.输电线路发生雷击跳闸的原因

输电线路发生雷击跳闸事故与多种原因有关,要实现输电线路的安全稳定运行,就要全面分析发生雷击跳闸的作用原理,掌握规律,这样才能保证输电线路的稳定。相关研究表明,雷击跳闸主要与绝缘子产生的放电电压有关,与发生雷击后电流强弱有关,还和杆塔本身的接地阻值有关。因此对于输电线路的检修维护,要全面分析输电线路引发雷击跳闸的根本原因,针对事故的原因制定防雷措施。雷击发生的区域地形较为复杂,比如处于风口或山谷等危险地带,这些区域易受到了不良天气的影响,由于区域环境的特殊性,雷击的发生几率较大。

输电线路中的杆塔需要保证可靠的绝缘能力,如果绝缘数值降低易受到雷击的影响。当前由于技术的进步,杆塔的绝缘效果有了很大幅度的提升,但是由于杆塔存在附属设施如:杆塔标志牌、防雷设施、防鸟设施等,如果这些设施的绝缘能力不足,杆塔易受到雷击的作用,特别是绝缘能力薄弱部位受到雷击后易发生跳闸。雷击还会易发生在地面标高快速变化的区域或土壤本身阻值率较高的地带。输电线路如果位于地下,会受到腐蚀作用,线缆的绝缘性能会变差。如果有雷击发生,产生的过电流不能快速分散流出,接地电阻会引发跳闸事故。另外,如果接地电阻的质量难以保证也会引发绝缘闪络,电阻负荷承载能力和雷击发生的频率有关。避雷线位置也易发生雷击,特别是存在保护角设计的大杆塔。由于避雷线本身的保护能力是在一定范围内的,如果超出了保护范围,也会引发跳闸事故。保护角的应用有利于防止输电线受到雷电的作用,保护角的设备范围与保护效果存在反比关系。在输电线路的运行中,由于多种原因的影响,防雷方面的保护作用会发生弱化,难以实现发生雷击后对绝缘子串的保护,因此输电线路在雷击作用下会有绕击发生,引发跳闸现象。

2.如何降低输电线路雷击跳闸率措施研究

2.1明确输电线路防雷改造整体原则

采取“改造接地电阻为主,加装避雷线、避雷器为辅”的防雷对策,先是梳理出多雷击、多雷害、接地电阻严重不合格、落雷密度大且平行线路少的线路,并根据线路杆塔所处的地形和土壤电阻率特点,使平地、农田区域线路杆塔接地电阻改至10Ω以下,山地区域线路杆塔接地电阻改造至20Ω以下。对于部分土壤电阻率高、接地电阻大且难以改造的区段线路,则可考虑加装避雷线、避雷器弥补接地网、接地引下线电阻大的不足。

2.2减少杆塔接地的电阻

对于普通的杆塔,相关的工作人员去减少杆塔接地电阻,这就是为了有效地提升电力线路的耐雷水准,避免出现反击等问题,通常这也是比较常见的一种防雷手段。土壤电阻率比较低的区域,相关的工作人员需要全面地运用杆塔自然电阻,选取和线路彼此平行的地线手段,地线和导线的耦合效用能够在很大程度上减小绝缘子串之中的电压数值,让防控雷击问题的能力上升。

期刊文章分类查询,尽在期刊图书馆一般来说,如果土壤的电阻率相对很高,该地域就可以运用部分的降阻剂,在运用完降阻剂之后,此时的接地电阻会伴不断地减少,同时因为其pH值通常浮动在7.7~8.6区间,部分展现出了中性略偏碱的属性,由此就会对接地体产生一定的钝化维护效用,所以通常状况下不会产生侵蚀方面的问题。值得注意的是,对于部分正处在地势高低起伏,即地面不平坦的区域,其接地电阻通常都来自高等级线路的杆塔。相关的工作人员都在逐步地运用一项较为先进化的接地模块,其高效地提升了接地体的整体空间,由此就能很好地优化了接地电的最终成效。

2.3合理选择地形架设线路

通过雷击事故研究分析,某些地区较其他地区更易遭受雷击,因此在新建、改扩建输电线路时尽量避免这些不利的地形,如雷电活动重灾区、地质断层地带、高岭潮湿盆地、地下有导电矿石、土壤与岩石交接处等,从根本上减少雷击故障的发生率。

2.4装配侧向的避雷针

根据过往的经验教训可知,输电线路的绕击耐雷水准,在很大程度上小于直击以及反击耐雷顺准,因为地线与杆塔二者对弱雷的诱发程度远远不及强雷,所以弱雷极易穿透其防护装置而迅速地绕击到导线之中,当它产生的整体强度要远远大于绕击耐雷水准的情况之下,就极有可能出现雷击跳闸问题。在降低保护角问题上出现阻碍的状况下,于地线或杆塔之中装配一些侧向水平的短针是一项较为合理的防雷手段,在很大程度上这是由于针较之于线,更加容易产生迎面放电,由此就可以中途拦截下行先导,还能够逐步地强化地线及杆塔的吸引雷电效能。水平方向搭设短针等工具可以高效地防御弱雷问题,不过在装配的过程中,相关的工作人员务必要按照各种杆塔大小来予以严密地装配处理。

2.5高杆塔提升绝缘能力

一些输电线路需要途径特殊区域,杆塔的高度较高,但是杆塔在增加高度的同时会导致发生雷击的几率上升。针对杆塔高度较高的不利条件,为了防雷可以采用增加绝缘子串数量以降低影响。还可以采用增加塔头距离的方式保证防雷效果。高杆塔的缺陷是输电线易产生绕击问题。在设计中,对于总高度超过50米杆的塔可以采用避雷线的方式以及塔高在增加的同时,也要增加绝缘子串的数量。

2.6加装保护间隙

输电线路有疏导型和阻塞型的防雷措施,之前的一些防雷措施是属于阻塞型的措施,它们可以提升输电线路的耐雷水平。相比而言,也有一些防雷措施是属于疏导型的,比如加装保护间隙。加装保护间隙,可以通过在绝缘子之间加装并联间隙来实现,将间隙装置并联在绝缘子之间,可以增大间隙的空间,使雷电的闪络在间隙之间发生,起到疏导防雷的作用,实现避免电弧损伤线路的现象。安装保护间隙时,在绝缘子的两端,并联一对招弧角,此招弧角长度小于绝缘子的长度。并联间隙,可以转移和疏导工频电弧,可以改良工频电场,还可以改变雷击闪络路径,是具有多种功效的防雷装置。并联间隙的电极,也叫作均压引弧环或招弧角,这与它的结构有较大的关系。

3.结语

综上所述,在我国保证电力正常工作的重要设施就是输电线路的正常运作,输电线路在人民正常的生活中发挥着重要的作用。输电线路途径雷雨多发的区域,易受到雷电的作用,引发跳闸事故。因此有必要分析雷击跳闸产生的原因。针对原因对输电线路要采取相应的保护措施,防止发生雷电后线路引发跳闸问题。输电线路的防雷措施要考虑到所在区域的实际,防雷措施要有针对性,要实现综合防雷,以控制输电线路雷击跳闸事故的发生。

参考文献:

[1]刘强.输电线路雷击跳闸原因及其防雷措施应用探析[J].湖州师范学院学报,2010,32(S1):188-191.

[2]张海鹰,钱文海,崔辰.高压输电线路的防雷技术探讨[J].山东气象,2014,34(02):45-47.

[3]孙培利.论线路遭雷击原因及防雷措施[J].安装,2007(06):37-38.

论文作者:王锋

论文发表刊物:《当代电力文化》2019年第15期

论文发表时间:2019/12/12

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈如何降低输电线路雷击跳闸率论文_王锋
下载Doc文档

猜你喜欢