基于监测信息融合的柱状节理玄武岩围岩松弛变形及安全性状研究论文_姜,龙

中国水利水电科学研究院 北京 100048

摘要:本文基于柱状节理玄武岩围岩应力应变及变形等监测成果,系统地进行了围岩松弛变形演化规律和变形机制研究,初步建立了能量速率和单位变形力双重指标的围岩安全评价体系。研究成果表明:①柱状节理玄武岩围岩自稳能力较差,围岩变形随深度增加而减小。开挖支护方式施工有利于控制变形收敛范围,预裂爆破有利于控制围岩整体变形,开挖无支护和预裂爆破不利于控制变形收敛范围;②柱状节理玄武岩围支护后临空围岩形成拱圈,有利于吸收围岩变形所释放的能量。预裂爆破有效阻止围岩浅层节理变形,但不利于控制后期围岩变形所伴生的隐节理变形。开挖有利于释放围岩浅层节理变形所产生的能量,及时支护有利于控制围岩变形所伴生的隐节理变形所产生的能量。

关键词:柱状节理玄武岩;围岩松弛;安全性状;监测信息

Rock loosening deformation and security characters of columnar jointed basalt based on monitoring information fusion

Jiang Long

(1. China Institute of Water Resources and Hydropower Research,Beijing,100048)

Abstract: Based on the monitoring results of columnar jointed basalt rock stress and strain deformation, the research systematic studied the evolution of rock loosening deformation and deformation mechanism, initially established a surrounding rock safety evaluation system with energy rate and unit deformation force double indexes. The research shows that: ①The stability of columnar jointed basalt is poor, the surrounding rock deformation decreases with the depth increasing. Excavation with support construction methods help control the deformation of the convergence range, pre-splitting blasting help control the deformation of surrounding rock, excavation without support and pre-split blasting is not conducive to control the deformation convergence range. ② Invading surrounding rock was formed arch after the columnar jointed basalt rock supported, it is conducive to the absorption of surrounding rock deformation energy released. Pre-splitting blasting can effectively prevent the deformation of surrounding rock in shallow joints, but not conducive to control the late surrounding rock deformation associated hidden joints deformed. Excavation is conducive to release the energy that generated by shallow surrounding rock joints deformation, timely support can help control energy generated by hidden joints deformation which produced by surrounding rock deformation.

Key words: columnar jointed basalt; rock loosening; security characters; monitoring information

1 引 言

玄武岩是火山熔岩的一类岩石,其受成岩过程和地质构造影响而发育一种呈不规则或规则柱状形态的原生张性构造——柱状节理。柱状节理玄武岩内部节理、裂隙较为发育,在施工过程中受本身岩体自稳能力差影响易发生岩体松弛、局部掉块和垮塌现象[1]。

近几年来,随着大型水电站的建设,揭露了柱状节理玄武岩对工程施工的影响和制约,引起学者诸多关注。陈旭等[2]对玄武岩柱状节理成因性状和岩体质量评价进行研究,徐卫亚等[3-4]对柱状节理岩体横观各向同性本构关系、宏观等效弹性模量、宏观等效强度参数、尺寸效应等进行了研究,石安池等[5]对柱状节理玄武岩岩体变形特性进行了研究,王思敬等[6-7]对柱状节理岩体真三轴模型试验、抗剪强度参数尺寸效应进行研究,朱道建等[8-9]对柱状节理岩体变形和强度各向异性进行了模型试验研究,冯夏庭等[10-13]对柱状节理玄武岩隧洞稳定、破坏模式及力学机制进行了研究。

本文结合现场白鹤滩水电站右岸导流洞围岩变形、锚固结构受力等施工期监测成果,采用现场监测、数值计算等方法,从柱状节理玄武岩结构、变形、力学等特性方面入手,研究其松弛变形演化规律和开挖支护效果,初步建立柱状节理玄武岩围岩松弛-开挖-支护协同的安全评价体系。其研究成果具有十分重要的现实意义和应用价值。

2 工程概况

白鹤滩水电站位于金沙江下游四川宁南县和云南巧家县境内,工程施工导流采用断流围堰、隧洞导流方式。导流洞采用城门洞型,洞身断面尺寸为19m*24m(宽*高)。其隧洞分上、中、下等三层开挖,典型断面和监测布置情况如图2.1所示。

Fig3.1 typical columnar jointed basalt rock structure

Fig3.2 cores of columnar jointed basalt core drilling

柱状节理玄武岩围岩节理柱体被节理、裂隙切割为不规则排列块体,节理柱体间呈闭合或微张状态,节理缝间无充填物,裂隙缝间破碎岩屑充填。卸荷后受法向张拉影响,节理岩体存在隐性节理结构面张开与节理面、裂隙面贯通,分解为更小的不稳定块体。地质钻孔取芯岩芯较围岩表面柱状节理块体小一些,也佐证了此情况。

4 柱状节理玄武岩围岩变形特性

结合柱状节理玄武岩隧洞开挖出现的掉块、局部垮塌等可能危及工程建设的情况,在柱状节理玄武岩洞段选取三段设定开挖支护A区、开挖无支护B区和预裂爆破支护C区等可能出现的施工方案,布设监测设施以研究围岩松弛变形演化规律及支护措施效果。

4.1 围岩开挖有支护工况

柱状节理玄武岩洞段在围岩开挖支护A区在2013年2月中层开挖后布设多点位移计,其洞室边墙典型曲线如图4.1所示。

图4.1 柱状节理玄武岩洞段典型开挖支护区围岩变形随时间变化曲线

Fig4.1 typical excavation with support area surrounding rock deformation versus time of columnar jointed basalt tunnel section

从图4.1可见,柱状节理玄武岩隧洞最大变形在下层开挖后突变约19mm,锚杆支护后增幅约3mm,2013年8月混凝土衬砌后变形增幅减缓但仍在增加,变形增幅约8mm,现阶段变形呈波动趋稳。

4.2 围岩开挖无支护工况

柱状节理玄武岩洞段在围岩开挖无支护B区在2013年1月上层开挖后布设多点位移计,其洞室边墙典型曲线如图4.2所示。

图4.3 柱状节理玄武岩洞段典型预裂爆破支护区围岩变形随时间变化曲线

Fig4.3 typical pre-splitting blasting support area surrounding rock deformation versus time of columnar jointed basalt tunnel section

从图4.3可见,柱状节理玄武岩隧洞围岩预裂后最大变形约3mm,下层开挖后增幅约11mm,锚杆支护后增幅约3mm,混凝土衬砌后变形增幅减缓但仍在增加,变形增幅约3mm,现阶段变形呈缓慢增加趋势。

5 柱状节理玄武岩围岩力学特性

在柱状节理玄武岩选定A、B、C区布设位移计同时,在其相应部位安装埋设锚杆应力计,以研究柱状节理玄武岩围岩松弛围岩结构受力演化规律和支护措施效果。

5.1 围岩开挖有支护工况

柱状节理玄武岩洞段在围岩开挖支护A区在拱肩下(上边墙)和边墙中层开挖底部(下边墙)于2013年1月上层开挖后布设锚杆应力计,其洞室边墙上、下部位典型曲线如图5.1所示。

图5.1 柱状节理玄武岩洞段典型开挖支护区围岩结构受力随时间变化曲线

Fig5.1 typical excavation with support area surrounding rock stress versus time of columnar jointed basalt tunnel section

从图5.1可见,柱状节理玄武岩隧洞锚杆最大应力在中层开挖突变约65MPa和55MPa,在下层开挖后突变约90MPa和180MPa,锚杆支护及混凝土衬砌后增幅较小,现阶段锚杆应力基本趋稳。

5.2 围岩预裂爆破支护工况

柱状节理玄武岩洞段在围岩预裂爆破支护C区按同一孔埋设2m、4m和6m布置的锚杆应力计在2013年2月中层开挖后布设锚杆应力计,其洞室边墙典型曲线如图5.2所示。

图5.2 柱状节理玄武岩洞段典型预裂爆破支护区围岩结构受力随时间变化曲线

Fig5.2 typical pre-splitting blasting support area surrounding rock stress versus time of columnar jointed basalt tunnel section

从图5.2可见,柱状节理玄武隧洞围岩预裂后锚杆应力突变分别为100MPa、70MPa和5MPa,下层开挖支护后增幅为140MPa、70MPa和50MPa,混凝土衬砌后增幅为30MPa、-10MPa和5MPa,现阶段2m深度处有所增加其他深度处基本趋稳。

6 柱状节理玄武岩围岩松弛演化规律及变形机制

自然山体在未隧洞施工前受区域地质构造和地下水等因素影响,处于自然应力动态调整过程,一旦受隧洞施工影响,自身应力状态发生改变,柱状节理玄武岩亦不例外。在爆破开挖、锚杆支护、混凝土衬砌等因素影响下,隧洞围岩自身应力动态调整,使其达到一个新的应力平衡。

白鹤滩水电站导流隧洞采用城门洞型,洞身断面尺寸为19m*24m(宽*高)。在柱状节理玄武岩洞段选取三段设定开挖支护A区、开挖无支护B区和预裂爆破支护C区等可能出现的施工方案。导流隧洞经爆破开挖、支护、混凝土衬砌等施工后,其典型围岩变形随深度变化曲线如图6.1所示。

图6.1 导流隧洞柱状节理玄武岩围岩变形随深度变化曲线(2015/12/07)

Fig6.1 diversion tunnel surrounding rock deformation of columnar jointed basalt with depth curve(2015/12/07)

从图6.1可见,导流隧洞柱状节理玄武岩围岩变形随深度增加而减小。开挖支护区围岩变形收敛范围较小,预裂爆破支护次之,开挖无支护最大。这说明其一柱状节理玄武岩自身稳定性较差;其二开挖支护有利于控制变形收敛范围;其三预裂爆破有利于控制围岩整体变形;其四开挖无支护和预裂爆破不利于控制变形收敛范围。

7 结 论

本文从柱状节理玄武岩结构、应力应变及变形等特征入手,深入系统地研究了柱状节理玄武岩围岩松弛演化规律和变形机制,并初步探讨了通过能量速率和单位变形力进行围岩安全性状评价研究,得到结论如下:

(1)柱状节理玄武岩围岩自稳能力较差,围岩变形随深度增加而减小。开挖支护方式施工有利于控制变形收敛范围,预裂爆破有利于控制围岩整体变形,开挖无支护和预裂爆破不利于控制变形收敛范围。

(2)柱状节理玄武岩围支护后临空围岩形成拱圈,有利于吸收围岩变形所释放的能量。预裂爆破有效阻止围岩浅层节理变形,但不利于控制后期围岩变形所伴生的隐节理变形。开挖有利于释放围岩浅层节理变形所产生的能量,及时支护有利于控制围岩变形所伴生的隐节理变形所产生的能量。

参考文献:

[1]王红彬,郝宪杰,李邵军,等.白鹤滩柱状节理岩体几何结构特征与卸荷松弛特性分析[J].土工基础,2015,29(3):84-88.(WANG Hongbin, HAO Xianjie, LI Shaojun, et al. Properties of Columnar Jointed Rock Mass in Rock Structure and Unloading Loose and its Engineering Prevention[J]. Soil Eng and Foudation, 2015,29(3):84-88. (in Chinese))

[2]陈旭,许模,康小兵,等.玄武岩柱状节理成因性状研究及其对岩体质量的影响[J].地质找矿论丛, 2008, 23(3): 260-263.( CHEN Xu, XU Mo, KANG Xiao-bing, et al. The research on genetic habit of columnar cleavage in basalt and the influence on the rock mass[J]. Geological Prospecting Review, 2008, 23(3): 260-263. (in Chinese))

[3]狄圣杰,徐卫亚,王伟,等.柱状节理岩体横观各向同性本构关系研究[J].中国矿业大学学报,2011,40(6): 881-887. (DI Sheng-jie, XU Wei-ya, WANG Wei, et al. Transversely isotropic constitutive properties of a columnar jointed rock mass[J]. Journal of China University of Mining & Technology, 2011, 40(6): 881-887. (in Chinese))

[4]闫东旭,徐卫亚,王伟,等.柱状节理岩体宏观等效弹性模量尺寸效应研究[J].岩土工程学报,2012,34(2): 243-250. (YAN Dong-xu, XU Wei-ya, WANG Wei, et al. Research of size effect on equivalent elastic modulus of columnar jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 243-250 . (in Chinese))

[5]石安池,唐鸣发,周其健. 金沙江白鹤滩水电站柱状节理玄武岩岩体变形特性研究[J].岩石力学与工程学报,2008,27(10):2 079–2086.(SHI Anchi , TANG Mingfa , ZHOU Qijian. Research of deformation characteristics of columnar jointed basalt at baihetan hydropower station on jinsha river[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(10):2 079–2 086.(in Chinese))

[6]刘海宁, 王俊梅, 王思敬. 白鹤滩柱状节理岩体真三轴模型试验研究[J]. 岩土力学, 2010, 31(增刊 1): 163-171. (LIU Hai-ning, WANG Jun-mei, WANG Si-jing. Experimental research of columnar jointed basalt with true triaxial apparatus at Baihetan hydropower station[J]. Rock and Soil Mechanics, 2010, 31(Supp.1): 163-171. (in Chinese))

[7]刘顺桂,池永翔,王思敬,等.柱状节理玄武岩体抗剪强度参数尺寸效应研究[J].工程地质学报, 2009, 17(3): 367-370. (LIU Shun-gui, CHI Yong-xiang, WANG Si-jing, et al. Size effect on shear strength of basalt rock mass with columnar joints[J]. Journal of Engineering Geology, 2009, 17(3): 367-370. (in Chinese))

[8]朱道建,杨林德,蔡永昌.柱状节理岩体各向异性特性及尺寸效应研究[J].岩石力学与工程学报,2009,28(7):1405–1414.(ZHU Daojian,YANG Linde,CAI Yongchang. Research on anisotropic characteristics and size effect of columnar jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1405–1414.(in Chinese))

[9]朱道建,杨林德,蔡永昌.柱状节理岩体压缩破坏过程模拟及机制分析[J].岩石力学与工程学报,2009,28(4):716–724.(ZHU Daojian,YANG Linde,CAI Yongchang. Simulation of compressive failure process of columnar jointed rock mass and its failure mechanism analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(4):716–724.(in Chinese))

[10]郝宪杰,冯夏庭,李邵军,等.柱状节理玄武岩隧洞破坏模式及其力学机制模拟[J].岩土力学,2015,36(3):837-846.(HAO Jian-jie, FENG Xia-ting, LI Shao-jun,et al. Failure mode of columnar jointed basalt tunnel and its mechanism simulation[J]. Rock and Soil Mechanics, 2015, 36(3): 837-846. (in Chinese))

[11]向天兵,冯夏庭,江权,等.大型洞室群围岩破坏模式的动态识别与调控[J].岩石力学与工程学报, 2011, 30(5): 871-883. (XIANG Tian-bing, FENG Xia-ting, JIANG Quan, et al. Failure mode dynamic recognition and control for surrounding rock of large-scale cavern group[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 871-883. (in Chinese))

[12]吴文平,冯夏庭,张传庆,等.深埋硬岩隧洞围岩的破坏模式分类与调控策略[J].岩石力学与工程学报, 2011, 30(9): 1782-1802. (WU Wen-ping, FENG Xia-ting, ZHANG Chuan-qing, et al. Failure mode dynamic recognition and control for surrounding rock of large-scale cavern group[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1782-1802. (in Chinese))

[13]江 权,冯夏庭,樊义林,等.柱状节理玄武岩各向异性特性的调查与试验研究[J].岩石力学与工程学报,2013,32(12):2527–2535. (JIANG Quan,FENG Xiating,FAN Yilin,et al. Survey and laboratory study of anisotropic properties for columnar jointed basaltic rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2527–2535.(in Chinese))

论文作者:姜,龙

论文发表刊物:《防护工程》2017年第23期

论文发表时间:2018/1/9

标签:;  ;  ;  ;  ;  ;  ;  ;  

基于监测信息融合的柱状节理玄武岩围岩松弛变形及安全性状研究论文_姜,龙
下载Doc文档

猜你喜欢