摘要:大气颗粒物是一种重要的空气污染物,详细分析了大气颗粒物浓度的检测原理、检测方法。基于膜捕集的称重法是最基本的颗粒物浓度检测方法,但是基于其他原理的颗粒物浓度检测方法在颗粒物的实时在线检测方面得到了广泛应用,指出自动化、智能化和网络化是大气颗粒物浓度检测仪器的方向发展。
关键词:大气颗粒物;浓度;检测;实时在线
大气环境检测是所有大气环境工作的物质基础,不论是进行大气环境质量监测、大气污染防治,还是进行大气环境科学及工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行,离开了准确的检测,其他的大气环境方面的所有工作都成了无稽之谈,因此,大气环境检测技术也随着大气环境科学与工程的发展而得到了迅速发展。大气中悬浮颗粒物的存在,会对环境产生严重影响,因此,大气颗粒物一直是大气环境研究中最前沿领域之一。大气颗粒物浓度是评价大气颗粒物的重要指标之一,颗粒物浓度的检(监)测一直受到环境工作者的重视。本文综述大气颗粒物浓度检测技术的原理及检测仪器设备的市场及研究现状,并展示其发展趋势。
1大气颗粒物浓度及测试分类
大气中的悬浮颗粒物(SPM)是大气颗粒物的统称,可分为一次污染物和二次污染物。一次污染物是直接进入大气中的颗粒物,粒径大小一般在1~20μm范围内,大部分大于2.5μm;二次污染物颗粒较小,其大小在0.01~1.0μm范围内,是大气中的气态污染物之间及气态污染物与尘粒之间相互发生化学或光化学反应产生的。根据大气颗粒物的粒径大小,将大气颗粒物分别命名。其中,对环境影响较大,引起人们普遍关注的有总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)、可入肺颗粒物(PM2.5)。
大气颗粒物浓度可分为个数浓度、质量浓度和相对质量浓度。个数浓度指以单位体积空气中含有的颗粒物个数表示的浓度值,单位为粒/cm3、粒/L,多应用于空气洁净技术领域,无尘室、超净工作间等超低浓度环境和需要气溶胶的个数浓度来解释种种现象的气象学领域。质量浓度指以单位体积空气中含有的颗粒物的质量表示的浓度,单位为mg/m3或μg/m3,用于一般的大气颗粒物研究领域。相对浓度是指与颗粒物的绝对浓度有一定对应关系的物理量数值,作为相对浓度使用的物理量有光散射量、放射线吸收量、静电荷量、石英振子频率变化量等。
2个数浓度的测定方法
2.1化学微孔滤膜显微镜计数法
在洁净环境含尘浓度的测定中,用滤膜显微镜计数法测量个数浓度是个数浓度测定法的最基本方法,其原理是将微粒捕集在滤膜表面,再使滤膜在显微镜下成为透明体,然后观察计数,分试样样品采集、显微镜观察和粒子计数三个过程,属捕集测定法。
2.2光散射式粒子计数器
光散射式粒子计数器的原理是用光照射浮游粒子,粒子将引起入射光的散射,球形粒子引起的光散射强度可由Mie的光散射理论式计算,被测粒子的散射光强与含各种粒径的聚苯乙烯标准粒子的散射光强相比较,得到不同粒径粒子的个数浓度。光散射法可直接得到测量数据,但颗粒物重叠、标准粒子与被测粒子的折射率不同及粒子带有电荷会造成误差;对于浓度较高的粒子,几乎所有的计数器都是随粒径的变小而计数率变低。
3质量浓度的测定
3.1滤膜称重法
滤膜称重法是颗粒物质量浓度测定的基本方法,以规定的流量采样,将空气中的颗粒物捕集于高性能滤膜上,称量滤膜采样前后的质量,由其质量差求得捕集的粉尘质量,其与采样空气量之比即为粉尘的质量浓度。
期刊文章分类查询,尽在期刊图书馆
仪器主要由采样仪、分析天平等组成,根据所用的采样仪的流量大小不同,将采样仪分为大流量(1m3/min以上)、中流量(100L/min左右)和小流量(10~30L/min)三种,在选用采样仪时,应考虑他们之间的可比性,一般以大流量采样仪作比较。称重法单独或配合切割器可测量TSP、PM10、PM2.5,称重法测定颗粒物质量浓度时需要的时间一般较长(3~24h)。
3.2光散射式测量仪
光散射数字测尘仪包括光源、集光镜、传感器、放大器、分析电路及显示器等,由光源发出的光线照射在颗粒物上产生散射,此散射光通过集光镜到达传感器上,传感器把感受到的信号转换成电信号,经过放大和分析电路,可以计测脉冲的发生量,即可得到以每分钟脉冲数(CPM)表示的相对浓度。当颗粒物性质一定时,可以通过称重法先求出CPM与mg/m3的转换系数K,根据K值将CPM值直接转换、显示为质量浓度(mg/m3)。光散射数字测尘仪的光源有可见光(如P-5L型光散射测尘仪)、激光(如LD-1型激光粉尘仪)及红外线等,配合切割器,可以用来测量PM10、PM2.5。
3.3电荷法
电荷法主要用在烟气中颗粒物(粉尘)的监测。当烟道或烟囱内粉尘经过应用耦合技术的探头时,探头所接收到的电荷来自粉尘颗粒对探头的撞击、摩擦和静电感应。由于安装在烟道上探头的表面积与烟道的截面积相比非常小,大部分接收到的电荷是由于粒子流经过探头附近所引起的静电感应而形成。排放浓度越高,感应、摩擦和撞击所产生的静电荷就越强。即Q/t∝M/t(这里,Q代表电荷,M代表颗粒物量,t代表时间)电荷法技术包括直流耦合与交流耦合技术两种。
3.4β射线吸收法
β射线吸收式测量仪的工作原理是:β射线在通过颗粒物时会被吸收,当能量恒定时,β射线的吸收量与颗粒物的质量成正比。测量时,经过切割器,将颗粒物捕集在滤膜上,通过测量β射线的透过强度,即可计算出空气中颗粒物浓度。仪器可以间断测量,也可以进行自动连续测量,粉尘对β线的吸收与气溶胶的种类、粒径、形状、颜色和化学组成等无关,只与粒子的质量有关。
3.5压电晶体法
压电晶体法(又称压电晶体频差法),采用石英谐振器为测量敏感元件,其工作原理是使空气以恒定流量通过切割器,进入由高压放电针和微量石英谐振器组成的静电采样器,在高压电晕放电的作用下,气流中的颗粒物全部沉降于测量谐振器的电极表面上,因电极上增加了颗粒物的质量,其振荡频率发生变化,根据频率变化可测定可吸入颗粒物的质量浓度,石英谐振器相当于一个超微量天平。
4大气颗粒物浓度测试技术的发展趋势
随着自动化及信息技术的迅速发展,环境监测也由以人工采样和实验室分析为主,向自动化、智能化和网络化为主的监测方向发展;由较窄领域监测向全方位领域监测的方向发展。监测仪器逐步向高质量、多功能、集成化、自动化、系统化和智能化的方面发展。社会需要大量的精确、使用方便、操作简单的大气颗粒物监测仪器、监控设备,应重点发展用于在线监测污染源烟尘、工业粉尘排放量(浓度或总量),包括测量相关参数:流量、含湿量、温度等,实现污染源排放浓度或总量监测以及监测和监控一体化的监测仪器,特别是适用于细微颗粒物(PM10、PM2.5)的采样和监测仪器。
要适应这个发展,必须加强环境监测仪器和监测技术现代化的基础研究,研究颗粒物浓度对大气各种性质的影响,反过来根据这些影响探索物理、化学、生物、电子、光学等新技术在环境监测仪器和监测技术中的应用,研究新的颗粒物浓度检测方法。同时,促进监测仪器科研与生产结合,加快环境监测技术的创新和成果转化,逐步提高国内监测仪器的研发水平。
参考文献:
[1]龚雪平,马维琦,丁荟.气溶胶浓度测定的种类和原理[J].中国环保产业.2007(10):28~29
[2]孔少飞,白志鹏,陆炳,等.固定源排放颗粒物采样方法的研究进展[J].环境科学与技术,2011,34(12):88-94.
[3]何振江.激光烟气粉尘排放量监测系统的浓度测量问题研究[J].华南师范大学学报.2000(2)
论文作者:管锡伟
论文发表刊物:《基层建设》2018年第26期
论文发表时间:2018/10/1
标签:浓度论文; 颗粒物论文; 滤膜论文; 大气论文; 粒子论文; 质量论文; 粉尘论文; 《基层建设》2018年第26期论文;