“整数乘除”内容分析与教学建议,本文主要内容关键词为:乘除论文,整数论文,建议论文,内容论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
一、内容分析
苏教版小学数学教材中有关整数乘除的内容主要安排在二至四年级。
纵向看,整数乘法按照如下顺序编排:【二年级上册】乘法的意义和表内乘法→【二年级下册】两位数乘一位数→【三年级上册】三位数乘一位数→【三年级下册】两位数乘两位数→【四年级上册】100以内的口算乘法→【四年级下册】三位数乘两位数。整数除法按照下面的顺序编排:【二年级上册】除法的意义和表内除法→【二年级下册】有余数除法→【三年级上册】两位数除以一位数(商是两位数)→【三年级下册】三位数除以一位数→【四年级上册】三位数除以两位数。
横向看,在每一册的教材安排中基本都涉及了口算、笔算、估算和解决问题这几方面,并且整数乘除的内容在教材中遵循了循序渐进、螺旋上升的原则。
1.整数乘除法教学中的情境设计
小学生对算术运算概念的理解常常建立在情境的基础上,为了在情境与运算概念中建立联系,就要利用情境,也就是为学生提供丰富的表征。这些表征包括:以经验为基础的活动;可操作的活动:图画和图表;口头语言;书面语言。教材中对情境的设计与处理较好地体现了多样化的原则。
以乘除法的意义教学为例。乘法意义的教学为学生提供了一幅生动活泼的图画(见图1),再提出问题:兔一共有多少只?鸡呢?这种类型的图画是学生在日常生活中常见到的,看这样的图学生很有经验,这就是以经验为基础的活动。
图1 认识乘法情境图
除法意义的教学创设了一个开放的活动情境——分6个桃(见图2),在教学之前学生都有分东西的经历,学生可以按照自己的想法思考并动手操作分这6个桃,这就为学生创造了一个具有操作性的活动情境。
图2 认识除法情境图
再看表内乘除法的计算教学,也为学生提供了丰富的表征。如2~4乘法口诀的教学(见图3),在学生通过情境图掌握2、3的乘法口诀后,列表编写4的乘法口诀;又如表内除法的教学中(见下页图4),让学生利用10个小朋友打球,每2人一组的情境图,理解除法算式10÷2。这些都是以图画或图表的方式帮助学生建立表征。
图3 2~4的乘法口诀情境图
图4 表内除法情境图
教材中关于乘除法意义的教学都是创设了不同的情境,联系学生的生活,激活学生的经验,把抽象的概念教学建立在实景、实物表象的基础上。学生有了多样化的经验后,有助于他们对抽象数学知识的理解并建构数学知识的意义。
2.整数乘除法教学中的数学思想
小学生学会了整数乘除法,并用它来解决问题,在这样的学习过程中,也形成了他们思考问题的策略,并从中感受各种数学思想。教材在数学思想方面也作了许多孕伏和渗透。
(1)渗透函数的思想。
函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系。小学生对函数的理解不是符号化的理解,而是在现实生活中的体验。小学生对于函数的体验是在日常的数学生活实践的基础上获得的,它和问题情境紧密相关。例如三年级上册教材中教学三位数乘一位数(乘数中间或末尾有0的乘法)的练习部分设计了一道关于乘法填表练习(见图5),让学生先填表,然后通过观察体会匾的个数和蚕茧的个数之间的依存关系和变化规律。
图5 三位数乘一位数练(三上)
这就是通过表格的问题情境,结合不同乘除教学内容进行的一种函数思想渗透。
(2)渗透比例的关系。
比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。比例也是一种函数思想。小学生对比例关系的体验也是需要在现实问题情境中进行的。虽然教材在六年级有单独教学比和比例的单元,但其实在之前就进行了逐步渗透。例如四年级上册的除法练习中设计了一道填表的题(见图6),让学生先填表再说说发现。学生不仅会发现被除数和除数之间的倍数关系,也可以通过观察被除数自身的变化或除数自身的变化,发现其中的倍数关系。这就是结合倍的知识在渗透比例的关系。
(3)渗透“不变量”。
先填表,再在小组里说说你的发现。
三年级上册乘法单元中涉及“单价、数量、总价三量的关系”问题,当总价和数量这两个变量发生变化时,单价保持不变,单价反映了总价与数量之间的关系,像这样的量就是“不变量”。例如四年级上册除法单元中三位数除以整十数练习部分的一题(见图7),不变量是长方形土地面积,学生也能从面积不变中体会长和宽这两个变量的变化规律。
王大伯准备围一块360平方米的长方形地种植树苗。如果长方形地的长是90米,宽应该是多少米?如果长分别是60米、40米、30米或20米呢?
图7 除法练习(四上)
3.整数乘除法教学中的数学能力
(1)估算能力。
估算是重要的数学技能,估算在一定程度上反映出学生的数学能力,对学生的数学思维发展具有促进作用。苏教版教材中,估算教学与口算、笔算的教学相结合,逐步渗透进行。整数乘除的估算第一次出现在二年级下册连续进位乘的前一个练习中(见图8),第一次在例题教学中出现是在连续进位乘的笔算教学中(见图9)。这两次估算教学都体现了估算的同一种策略——简约,把两位数看成一个整十数计算比较简单。
把两位数看作整十数,结果大约是几十?连一连。
(2)口算能力。
口算能力是指不用纸笔,直接在脑中进行计算的能力,在计算能力中占有重要的位置,是笔算与估算的基础。口算常常会用到估算的策略,但是口算是为了得到一个准确的答案,笔算能力是在口算能力的基础上发展起来的。教材中口算部分的编排与估算类似,都采用了逐步渗透的方式。小学生口算内容的核心是基本口算,在整数乘除内容中主要是指乘法口诀。
除了表内乘法和表内除法的教学,教材中其他整数乘除的口算教学基本上是渗透了一种策略,我们可以把它理解为一种“分解因数”的策略。以各册教材中的一道乘法口算练习为例(见图10),这些练习都是把其中的一个乘数分解成一个数乘10或乘100,使计算简便。
图10 乘法口算示例
二、教学建议
1.乘除法概念的正确建构
乘除法是继加减法后再学习的一种运算,学习乘法时,学生在理解乘除法的过程中,数学思维会发生重要的变化。
(1)乘法概念的建构。
求几个相同加数的和就是乘法,这句话可以理解加法在某种程度上是乘法的基础,解决乘法运算的方法之一就是重复做加法。但如果将乘法仅仅看成是复杂加法,显然是不对的,乘法需要小学生更多的数学理解。例如教材中教学2的乘法口诀时所呈现的是一个生活情境(见图11):1个跷跷板可以坐2人,2个跷跷板以坐4人。其实这是一个“一对多”的情境,1个跷跷对应2个人(1与2对应),2个跷跷板就是2乘2得4。它并不是简单的几个相同数相加的问题,而是两个集合之间的一与多相对应的恒定关系。这种方法与加法思维方式具有本质区别。
除法概念的建构是基于平均分的活动的,平均分的活动虽然也和加减法一样,涉及总体与部分的关系,但是也有很大的不同。在加减法中,整体是部分之和,但每一部分无需相等。如二上认识除法的例题教学中(见图12),第一种分法就是基于加减法的理解,第二种和第三种分法就要考虑3个因素:总个数、平均分和每份同样多。所以,平均分是一种不同于加减法的新情境。
2.整数乘除法教学需要一定的记忆
口算是笔算的基础,能熟练口算,特别是基本口算,对笔算具有重要作用。这里的基本口算主要指乘法口诀,这也是口算表内除法的基础。张奠宙说:“没有记忆就无法理解,理解是记忆的综合,数学双基强调必要的记忆。”乘法口诀的教学需要记忆,课程标准也要求在第一学段结束时,口算要达到每分钟8-10题。因此,在教学时可以从以下几方面入手:
(1)利用乘加、乘减教学,帮助记忆乘法口诀。
教材中乘加、乘减教学的主要目的并不是为了教学运算顺序,而是让学生进一步理解乘法的意义,记忆乘法口诀。例如乘加乘减课例中的一道练习题(见图13),就是用意明显的特别设计。其中,3×2+2可以理解为3个2加1个2是4个2得8,渗透的是相邻乘法口诀之间的联系,这有助于学生有意义地记忆乘法口诀。
(2)利用多样化的活动练习,帮助记忆乘法口诀。
小学生解决基本乘除口算题的策略中有一种称为“直接提取”,使用这种策略时,这些计算已经在学生头脑中有一定的答案,他们所要做的是从长期记忆中提取出来。有研究表明,口算熟练的学生和不熟练的学生相比,前者更偏好使用“直接提取”,而后者难以做到。所以,在教学时要更加关注口算不熟练的学生。教材中采用了多种练习方式帮助学生记忆口诀,如编口诀,整理口诀,积累口诀,题组练习等。教师在教学中也可以组织学生通过不同的方式练习口算,比如独立口算,两人互相出题口算,三人或四人口算比赛,集体抢答等。
3.加强估算教学
估算在生活中有着广泛的应用,一个人在日常生活中使用估算的次数要远远大于精确计算。在整数乘除教学中,估算的教学与笔算的教学总是紧密结合的,教师要注重发展学生的估算意识和估算策略。小学生估算常用的策略主要有简约、转换和补偿,但是不同的学生对同一题使用的策略常常不尽相同。例如三年级下册两位数乘两位数的估算(见图14),学生在估算29×42时就会出现不同的方法,有的把29和42分别看作20和40;也有的把29和42分别看作30和50;还有的把29和42分别看作30和40。这三种方法采用的策略都是简约,把两位数看成整十数再算,但是使用第三种方法的学生还涉及了其他数学思维过程,可以解释为“29接近30,42接近40,这样估计的结果趋于精确”。前两种方法虽然没有第三种精确,但也是正确的。教师可以在笔算教学完成后让学生比较一下估算与笔算的结果,逐步帮助学生优化估算策略。
图13 乘加、乘减练习(二上)
图14 两位数乘两位数估算(三下)
4.注重培养学生解决问题的能力
解决问题与计算教学相结合是苏教版教材的特色之一。在计算教学时穿插解决问题,又在解决问题中巩固计算,同时渗透解决问题的策略,将为第二学段专门学习解决问题的策略打下坚实基础。比如教材在第一学段解决问题时以图文结合的方式呈现问题情境,设置“情境”就是一种策略。用人或物模拟问题情境,不仅使学生更清楚问题,还便于用语言具体叙述,易于理解。又如四年级上册除法单元的练习题(见图7),如果将这题的发现应用到下面一题(见图15),这种“延伸”策略,会有利于学生对具体问题的理解和解答。
食堂买来40筐西红柿,用去800元。
(1)平均每筐西红柿多少元?
(2)如果每筐西红柿的价钱降到原来的一半,用800元可以买多少筐这样的西红柿?
图15 除法练习(四上)