浅谈小学概念教学的策略论文_闫雯雯

浅谈小学概念教学的策略论文_闫雯雯

苏州工业园区青剑湖学校 闫雯雯

摘要:概念是枯燥的、乏味的,但却是重要的。怎样让枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。

关键词:小学数学 概念 教学

我们都知道,小学教学中的概念很多。在整个小学阶段的数学学习中,总离不开对数学概念的认识、理解、巩固与运用。同时由于数学概念较为抽象,而小学生的认识又是以具体思维为主要特征,在理解掌握数学概念上就有一定难度。针对小学生的认知规律和掌握数学概念的客观规律,我认为可从以下几个方面进行概念数学:

一、联系实际,引入概念

概念是比较抽象的理性知识,因此在引入新的概念时要根据学生的实际,考虑其接受能力,从具体到抽象,从简单到复杂地引入概念。

从学生的生活经验引入概念。在生活中有许多地方用到了数学,通过实物、教具、学具让学生观察、演示或操作来阐明概念,可以收到良好的效果。如让学生只用一把尺画一个圆,这对学生来说是一个考验。用圆规学生都能画圆,用一根线固定于一点也能画了个圆,那么为什么要求学生用一把直尺来画圆呢?这就是渗透圆的定义,虽然在小学阶段很多数学概念是描述性的,但也要尽可能的让学生的后继学习更有利于知识建构。通过这样的操作,会在学生头脑中留下这样的表象:圆就是所有到定点距离等于定长的点的轨迹。哪怕学生无法用语言来表述但是头脑中有了这样的表象对后继知识的学习是相当有利的。

从创设情景中引入概念。在引入概念之前,老师要积极创设一种情境,使用权学生感到问题是真实的、具体的、有趣的、有意义的、富有挑战性的,以激起学生强烈的求知欲,唤起学生的积极思维。

以旧概念的复习引入新概念。一个概念并不是孤立的,它总是处在一定的概念系统中,处在与其它概念的相互联系中,学生的学习都是通过概念同化习得新概念的。学习复杂概念之前,先学习更一般更简单的概念(即上位概念),以这个上位概念作为新概念的先行组织者,联系学生已学过的有关概念来阐明新概念的是教学的重要方法之一。如利用整除的概念阐明约数与倍数的概念。在公约数与公倍数的概念中,再添上“最大”、“最小”的限制,而得出最大公约数和最小公倍数的概念。实践表明,用先前的一个概念推导出新的概念,这样的既能使学生较好地理解新的概念,又能使知识结构形成的更完善,学生掌握得更牢固,更重要的是帮助学生树立起联系的思维方法,形成逻辑思维能力。

二、抓住本质,讲清概念

要使学生理解和掌握概念,关键在于提示概念的本质特征,也就是反映事物的根本属性及其主要表现,是该事物区别于其他事物或该概念区别于其他概念的根本之处。有些老师常埋怨学生知识学得死,不会灵活运用,究其原因就是学生没有很好地把握概念的本质。

期刊文章分类查询,尽在期刊图书馆如有些学生对平行四边形的认识必须是端端正正,成水平型的,当变换位置后就和他们理解平行四边形的概念相抵触了,分析造成这种情况的原因和教师提供事例的方式有关,呈现给学生的都是这样固定不变的平行四边形,就使学生不易区别平行四边形的本质属性与非本质属性,而把非本质的属性也纳入到概念的内涵中去。因此教师要在讲清概念时要十分准确地讲清概念的含义。有些性质、法则和公式中包含着的某些基础概念,办中一个词,但它所表示的含义也是极其明确的,在教学中要特别注意把这些含义准确而清晰地表达出来。抓紧住关键讲解概念,就能使学生明确新概念的本质属性及它的意义。如在教学分数意义时就要强调“平均数”。教师还要恰当地讲清概念的运用范围。如2是质数但不能说它是一个质数,只能说它是某个合数的质因数。又如在用字母表示数时,爸爸的年龄用A表示,小明的年龄有A~28表示,这里A并不能表示任意一个数,而是有一定的范围的。

三、分析比较,区别异同

有些概念表面看起来有类似之处,实际上似是而非,通过对比本质属性,使学生弄清它们之间的联系和区别,可以加深对概念的理解。如质数与质因数、互质数、数位与位数、整除与除尽等概念十分相似和相近,教学时要通过各种情况的反复比较,指明它们之间的联系与区别,帮助学生掌握概念实质。又如在教学小数的性质――“在小数的末尾添上零或者去掉零,小数的大小不变,”这里“小数的末尾”就不能说成是“小数点后面”,也不能说成是“小数部分”。“末尾”这个概念是“最后”的意思。在运用对比法教学时,必须在这个概念已经建立得比较清楚、牢固的基础上,再引入其他相关概念进行比较。否则,不仅不会加深学生对概念的理解,反而容易产生混淆现象。

四、启发思维,归纳概括

有的学生逻辑思维能力差,习惯于死记硬背,做习题时,只能依样画葫芦,遇到问题的条件或形式稍有变化,就束手无策,因此在概念教学中要注意发展学生的智力,培养学生自己去获得知识的能力。如在教学梯形的认识时,可以将平行四边形与梯形放在一起,通过让学生分类的方法来体会到梯形就是只有一组对边平行四边形。学生经历了这样的探索过程,形成了清晰的概念并提高了解决问题的能力。

五、前后联系,因“时”施教

教学具有很强的抽象性与系统性。有些概念之间的联系起来十分紧密,后者以前者为基础,从已有的概念引出新概念。有些概念随着知识的逐步积累,认识的逐步深入,而趋向于完善。所以,小学数学系教材按照儿童的认识规律和教学的内在联系,把教学内容划分为几个阶段,每个阶段有每个阶段的不同要求,有每个阶段各自的重点,这就决定了概念教学的阶段性。如对圆的认识,一年级学生就接触过了,只要在几具图形中能找到圆就行了;到高年级再认识就更深一步了,了解圆的各部分名称和它们之间的关系,并进行求圆的周长与面积的计算教学;到中学阶段还要学圆的有关知识,这时候对圆的定义是:圆是所有到定点距离等于定长的点的轨迹。又如商不变性质、分数的基本性质、比的基本性质这三个基本性质,形式不一样,但本质属性是相通的。如果不注意前阶段的教学内容和要求,讲后阶段的内容时,就不能把新旧知识有机地衔接起来,融会贯通;如果不了解后阶段的教学内容要求,讲前面的概念就不可能讲到恰在此时的好处,也容易把概念讲死。

掌握正确的数学概念是学习数学知识的基石,小学生接受抽象的概念,需要教者正确的引导。教法是灵活的,但是数学概念的重要性是不变的,教者还需要进一步努力,强化小学生对数学概念的理解与应用,为他们将来的数学学习打下坚实的基础。

参考文献:

[1]赵萍.数学概念教学别搞错了方向[J].湖南教育(下).2010(02)

[2]曹时武.数学概念课的教学模式探讨[J].中学数学.2010(12)

论文作者:闫雯雯

论文发表刊物:《成长读本》2017年11月总第24期

论文发表时间:2018/1/3

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈小学概念教学的策略论文_闫雯雯
下载Doc文档

猜你喜欢