小学数学教学中分类思想的意义和策略论文_宋艳菊

宋艳菊 河北省高阳县建新小学

摘要:数学学习离不开思维,数学探索需要通过思维来实现,在数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。。

关键词:小学数学分类思想意义教学策略

一、分类思想的概念。

数学中的分类思想是指根据数学对象本质属性的相同点与不同点,将其分成不同种类的数学思想。分类思想对学生的逻辑思维发展有着重要的意义。教学中可以用分类思想引入新知识和新概念,归纳整理知识,解决问题,根据数学的量性特征进行分类

其分类规则和解题步骤是:

1、根据研究的需要确定同一分类标准。

2、恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗地说就是要做到“既不重复又不遗漏”。

3、逐类逐级进行讨论。

4、综合概括、归纳得出最后结论。

二、分类思想的重要意义。

课程标准在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特性的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法在一般条件下的适用性和特殊情况下的不适用性,注意分类讨论,从而做到全面地思考和解决问题。

从知识的角度而言,把知识从宏观到微观不断地分类学习,既可以把握全局、又能够由表及里、细致入微,有利于形成比较系统的数学知识结构和构建良好的认知结构。分类讨论思想与集合思想也有比较密切的联系,知识的分类无时不渗透着集合的思想。另外,分类讨论思想还是概率与统计知识的重要基础。

三、分类思想的具体应用。

分类思想在小学数学的学习中有很多应用,例如从宏观方面,小学数学可以分为数与代数、空间与图形、统计与概率和实践与综合应用四大领域。从比较具体的知识来说,几大领域的知识又有很多分支,例如小学数学中负数成为必学的内容以后,小学数学数的认识范围实际上是在有理数范围内,有理数可以分为整数和分数,整数又可以分为正整数、零和负整数,整数根据它的整除性又可以分为偶数和奇数。正整数又可以分为1、素数和合数。

小学数学中分类思想的应用如下表。

四、分类思想的教学。

如前所述,分类思想在小学数学中占有比较重要的地位,而且应用比较广泛。在教学中应注意以下几点。

第一,在分类单元的教学中,注意渗透分类思想和集合思想,一方面是一般物体的分类,如柜台上的商品、文具等;另一方面要注意从数学的角度分类,如立体图形、平面图形、数的认识和运算等。同时注意渗透集合的思想,就是说当把某些属性相同的物体放在一起,作为一个整体,就可以看作一个集合。

第二,在三大领域知识的教学中注意经常性地渗透分类思想和集合思想,如平面图形和立体图形的分类、数的分类。

第三,注意从数学思维和解决问题的方法上渗透分类思想,如排列组合、概率的计算、抽屉原理等问题经常运用分类讨论思想解决。

第四,在统计与概率知识的教学中,渗透分类的思想。现实生活中的数据丰富多彩,很多时候需要把收集到的数据进行分类整理和描述,从而有利于分析数据和综合地做出推断。

第五,注意让学生体会分类的目的和作用,不要为了分类而分类。如对商品和物品的分类是为了便于管理和选购,对数学知识和方法进行分类,是为了更深入地研究问题、理解知识、优化解决问题的方法。

第六,注意有关数学规律在一般条件下的适用性和特殊条件下的不适用性。也就是说,有些数学规律在一般情况下成立,在特殊情况下不一定成立;而这种特殊性在小学数学里往往被忽略,长此以往,容易造成学生思维的片面性。如在小学里经常有争议的判断题:如果5a=2b,那么a:b=2:5 ,有人认为对,有人认为错。严格来说,这道题是错的,因为这里并没有规定a和b不等于0。之所以产生分歧,是因为在小学数学里有一个不成文的约定:在讨论整数的性质时,一般情况下不包括0。但是这样就造成了在解决有关问题时产生分歧,而且不利于培养学生思维的严密性,尤其是学生进入初中后的学习中,经常会因为解决问题不全面、忽略特殊情况而出现低级错误。

五、引导分类讨论,提高解题的能力

小学阶段,尤其是高年级,各种新旧知识交错出现,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类后,才能系统完整的理解它们,如不分类,就很容易出现混淆。在解题教学中,通过分类还有利于帮助学生概括,总结出规律性的东西,从而增强学生思维的条理性。

如五年级列方程解行程问题的复习课中,出现了各种不同类型的题目,而题中的一些关键字决定了它的思考方向。因此,教学本课时我以题组形式练习,出示了几个“动画”,分别演示了四种典型行程问题:两地相向而行、两地相背而行、同地点相背而行、同地点同方向前进(追及问题)。

通过学生的语言叙述,体验题目中关键字的重要作用,要求他们完成题目之后并请他们通过对比、观察、分析把它们分类。

结果学生出现了不同的分类标准:根据出发地点是否相同,根据出发方向是否一致,根据是否相遇,根据解题方法等。

通过合作交流同学们都赞许了这些分法,更得出了一个结论:只要分类的对象是确定的,标准是统一的,那么这个分类就是合理的。

又如:如五年级列方程解应用题,很清晰的可以把题目分为和倍和差倍应用题。在练习课中,对两中类型的题目进行对比,能够帮助学生更全面的思考问题。

由以上的例子,我们可以看出分类往往能帮我们理清错综复杂的问题,解题思路非常的清晰,步骤非常的明了。另一方面在讨论当中,可以激发学生学习数学的兴趣。

教学中渗透分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,利用现有教材让学生经历知识形成的过程,发挥在数学知识发生、形成和过程中所蕴含的数学思想,给学生提供足够的材料和时间,启发学生积极思维,相信会使学生在认识层次上得到极大的提高。

论文作者:宋艳菊

论文发表刊物:《成长读本》2018年3月总第28期

论文发表时间:2018/4/26

标签:;  ;  ;  ;  ;  ;  ;  ;  

小学数学教学中分类思想的意义和策略论文_宋艳菊
下载Doc文档

猜你喜欢