摘要:本文主要对发电厂热能动力系统优化与节能改造进一步分析了解。发电厂作为传统能源生产企业,在保证自身效益的前提下,需要进一步提升节能意识,实现自身综合效益增长,并符合当前发展规律,对热电厂动力系统优化与改造变得十分迫切。
关键词:发电厂;热能动力系统;优化;节能改造
引言:
作为社会进步的主要动力,能源已成为经济发展过程中被关注的重要内容。从目前的实际情况来看,在能源利用过程中,由于技术问题以及生态节能意识的缺乏而导致大量的能源被浪费已经成为了普遍的现象。因此,我国应该大力提倡可持续发展,促进生态与发展之间的和谐统一。作为高能耗行业之一的热电厂应该对热能动力系统进行优化与节能改造,从最大程度上节约能源。
一、发电厂热能动力系统的简述
传统发电厂有着自身的技术形态,在多项技术设备中,热能动力系统是其中最为重要的部分,热能动力的产生主要是机械形态,能量转换依赖机械能,由高温热源输送,产生热能效应,通过高温高压作用产生系统膨胀,排除循环产生的废热。发电厂热能动力系统具有较大的节能潜力,通过合理的优化与有效的改造,不仅可提高能源利用率,还可缓解环境压力。同时,在生产实践中应用现代化的技术,可以提高生产效率,保证生产质量,也可控制生产成本,在此基础上,企业的经济效益将日渐显著,同时,在节能优势愈加明显的基础上,企业将获得良性发展。
发电厂热能动力系统中所采用的热能动力装置主要指能够将热能转化为机械能而产生原动力的成套热力设备。使热量可从温度较高的热源处获取,这样在高压以及高温的作用下会发生膨胀,以此排除循环的废热。其中涉及的热源主要得益于如煤炭等矿物燃料的燃烧所产生的热能。但选用的大多矿物燃料多为不可再生资源,在投入使用过程中往往因技术或人员意识等因素影响造成生态破坏与环境的污染。尤其对于耗能较大的发电企业近年来在实践过程中发现,热能动力系统在热能向机械能转化并在废热排放过程中可挖掘出较大的节能潜力。因此,发电厂资源的合理利用以及减小其对生态环境的破坏可从优化与节能改造热能动力系统中进行。
二、发电厂热能动力系统优化与节能改造
1. 蒸汽凝结水回收利用
发电厂生产过程中,蒸汽热力扮演重要角色,蒸汽释放产生大量的热能后,会形成凝结水,这样就出现了热能的浪费,据不完全统计,浪费的蒸汽凝结水占蒸汽总热量20%~30%,如果对其进行合理的运用,将利于工业用水的节约,同时也利于燃料能源的节省。因此,发电厂应对蒸汽系统进行节能改造,具体措施为借助蒸水余热替代低压蒸汽,此时发挥凝结水的余热,以此减少低压蒸汽的能耗,进而利于达成节能减排的目标。对于凝结水而言,其回收方式主要有两种,一种为加压回收,另一种为背压回收,前者主要是利用气动凝结水加压泵,对凝结水进行加压输送,此方法具有一定的稳定性,后者主要是借助输水阀背压,对水蒸气与凝结水进行输送,此方法保证了回收水及二次水蒸气的有效利用。不论哪种方法,均能够起到回收再利用的作用,节约了能源、减少废气排放,满足环保标准要求。
2. 废气余热的回收再利用
除氧器运行过程中,排放大量的蒸汽,不利于热量收集,更造成了热能的损失,使整体运行质量下降。为了保证热能动力系统优化,则需要在冷却器上进行升级,全面减少热量的损失。为有效改善这一现状,就需发电厂能够积极采用废气余热回收再利用,加强对冷却器有效应用的重视程度,在防止热量大量消耗基础上还能尽可能降低安全事故出现可能性。
期刊文章分类查询,尽在期刊图书馆除此之外,发电厂排污主要采用方法便是定期和连续两种手段,其中定期排污是扩容降压,容易出现废水余热损失;而连续排污则是开展二次蒸汽回收,但却常常存在环境污染隐患。在这种情况下,发电厂为最大限度提高自身回收器利用率,实现废气余热回收再利用目标,就应在扩容降压基础上确保污水能够合理利用,达到节能改造目的。
3. 化学补水系统
我国大多数发电厂运行机组均为抽凝式结构,根据对热能动力系统化学补充水情况的深入了解,可明确该种方法主要存在意义便是在除氧器中进行补水帮助。发电厂机组是最主要的设备,为了保证设备的正常运行,需要通过抽凝式补水进行运转。为了有效提高设备运转速度与效率,则需要通过热能动力系统化学补水提升运转效果,在凝结器或除氧器中补入化学水,操作过程中,要严格控制好水的温度,如补水温度低,则需要借助装置提升水温,确保凝结器补充水快速进入。常规操作主要是喷雾式补水,这种操作回收部分排气废热,改善了凝结器真空状况。为了提高补水效果,也可采用低压加热器进行补水,会保证化学补水逐级加热,对高位能蒸汽量形成了系统的控制。
4. 废烟余热回收利用
作为二次能源,锅炉排放废气烟过程中产生的余热若未充分利用,也是较大的能源浪费。尤其在废烟的温度较高的情况下,向大气排放过程中很容易造成大气污染与环境的破坏。因此要求发电厂利用锅炉过程中既要保证其利用效率的提高,同时也需注意充分利用高温废烟并减少其对环境的污染。对此现状,热能系统优化过程中,应设置相应的节能器,或者直接安装低压省煤器于锅炉尾端,可使废烟的温度得以降低并提高锅炉的使用效率。一般对废烟余热回收时会利用预热空气以及预热工件,但受场地作用限制,往往避免预热工件的使用。而且该技术应用过程中由于成本较高,因此发电厂需以自身实际情况为出发点,使资源得到充分利用,实现成本节约与节能效益的结合。
5. 废水余热回收利用
除氧器运行过程中,排放大量的蒸汽,不利于热量收集,更造成了热能的损失,使整体运行质量下降。为了保证热能动力系统优化,则需要在冷却器上进行升级,全面减少热量的损失。在锅炉运动过程中其排污方式主要有两种,一种为定期排污,另一种为连续排污,前者为了有效排放污水,需要扩容降压,此时便会造成废水余热的浪费;后者虽然实现了对二次蒸汽的回收,但其回收率偏低,同时排放过程中也浪费了蒸汽与废水余热。发电厂锅炉排污浪费了废水余热,更产生了环境污染,为了全面解决这一问题,则需要对发电厂排污废热回收器做好改造,提高锅炉污水排放效果的同时,解决好余热回收,对锅炉设备进行充分的扩容,起到良好的节能降耗、环境保护效果,实现环保建设目标。
结束语:
综上所述,发电厂热能动力系统优化与节能改造将是促进其自身长远发展的主要途径。加强热能动力系统的优化与节能改造,是对工业生产产生的余热进行再次利用的手段与技术,这不仅能够减少工业的生产成本,提高其经济效益和生态加强热能动力系统的优化与节能改造,是对工业生产产生的余热进行再次利用的手段与技术,这不仅能够减少工业的生产成本,提高其经济效益和生态,而且还能保护环境,促进我国走上可持续发展的道路。
参考文献:
[1] 尹辉.炼化企业低温热系统与蒸汽系统优化改造分析[D].大连理工大学,2013.
[2] 刘兵,马肖飞.热能动力系统优化与节能改造分析[J].山东工业技术,2014,24:89.
[3] 李炜.基于火力发电厂热能动力装置的检测与维护分析[J].科技创新与应用,2015(31):122.
[4] 葛海霞.烟气热能回收利用装置烟气流动换热优化与应用研究[D].北京建筑工程学院,2011.
论文作者:殷延涛
论文发表刊物:《基层建设》2019年第21期
论文发表时间:2019/10/15
标签:热能论文; 发电厂论文; 余热论文; 动力论文; 节能论文; 蒸汽论文; 凝结水论文; 《基层建设》2019年第21期论文;