摘要:因为我国地域较广,输电线路分布较为广泛,雷电天气极易对输电线路产生影响,输电线路遭遇雷击并且产生故障的情况较多,通过实际运营经验,电力企业也要及时进行转变,以保障目前输电线路的安全运行。本文针对输电线路雷害原因及防雷对策进行相应的探索,以此提出有效防范雷害灾害、提升目前输电线路抗雷能力的具体措施,从而提高输电线路运行的可靠性。
关键词:输电线路;雷害原因;防雷措施
输电线路的长度一般为数十公里甚至更长,分布面也广,其杆塔一般高出地面 20m 以上,而且一般设置在旷野地区或者高山处,很容易受雷电影响,根据运行经验统计输电线路故障跳闸一半以上是由是雷击跳闸引起的。近年来,随着自然环境不断被破坏,每年雷暴日的数量在不断增加,使得输电线路的安全隐患也越来越多,越来越严重。为改变现状,应首先确定引起输电线路雷害故障的雷击性质,对其雷害原因进行细致的分析,并采取可靠有效的防雷保护措施,以保证电网设备的安全。
1.雷电与雷击的简单认识
雷电在种类上一般可分为直击雷、感应雷和球形雷三种,雷电对输电线路所造成的破坏主要是由雷电流产生的雷击所引发的。然而雷击主要是由两种带不同电荷的云相互撞击所产生的,或是带电荷的云层对大地产生的放电作用而产生的。架空输电线路在附近出现对地雷击时极易产生感应过电压,当带电雷云停留在输电线路上并进行对地放电时,输电线路上受静电感应影响所产生并积蓄的大量异性束缚电荷会在雷云放电的作用下挣脱束缚,以自由电荷的形式被释放到输电线路两端。自由电荷的释放无论是对高压输电线路还是低压输电线路都会产生上万伏的过电压,给供电系统造成极大破坏。
2.输电线路雷害的原因
输电线路的雷击闪电成因,是天空雷云放电形成过电压,借助输电线路杆塔产生放电通道,电路绝缘被击穿,通过这样的方式形成的电压就是大气过电压,包括感应雷过电压和直击雷过电压。雷击的原理就是为放电械流建立起通道,大地就能够对异种电荷产生感应,所以,接地装置的完备程度对雷击有直接影响。输电线路能够感应雷击过电压的极限值为400kV,对于小于35kV的线路来说,会给绝缘造成巨大威胁;对于超过110kV的输电线路来说,基本不会给绝缘带来危害。因此,直击雷是造成超过110kV的输电线路雷击故障的主要因素,接地装置的完好程度对雷击故障有直接影响。
直击雷的种类分为两种:雷电绕击与雷电反击,不论哪种情况都会对输电线路的安全运行产生危害。雷电绕击的电流较小,结合电流路径小,而雷击反击的电流大,结合电流路径大。要想选择最佳的防雷措施,就要先对雷击进行深入了解,完成雷击的定性,只有准确把握线路故障的闪络类型,选择具有针对性的防雷措施,才能让防雷效果达到预先的期望水平。反击雷过电压的产生是雷击杆顶和避雷线出现的雷过电压,受到杆塔的接地电阻以及绝缘强度影响,在绝缘弱相出现的概率较大,不具备特有的闪络相别。针对这种情况需要对杆塔的接地电阻进行减小,增强绝缘性能,从而让防雷水平得到提升。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,这种累计的产生方式受杆塔高度、线路防雷保护办法影响,在两边相发生的概率较高。就目前实际使用情况来说,针对雷电绕击的保护措施主要有降低避雷线保护角数量、安装避雷设备等。
3.输电线路的防雷措施
3.1装设避雷线
高压输电线路防雷的基本措施之一就是装设避雷线,这样不仅可以防止雷电直接击中导线,产生具有破坏性的过电压威胁输电线路的安全运行,避雷线还可以将雷电接引进入大地,而保证输电线路不被雷电流造成的过电压破坏。
期刊文章分类查询,尽在期刊图书馆同时避雷线最重要的部分就是其保护角的设置,必须要根据规范的防雷措施设计避雷线保护角,还要考虑山坡地区对保护角的影响,防止因避雷线的不规范装置,导致线路闪络次数的增多,从而影响电网运行的安全可靠性。对于避雷线的引流功能,其实施过程是由于接地电阻的不同,使得杆塔顶部电位的差异,当雷电波在避雷线中传输时,因为线路的耦合作用很容易感应出另一个行波,但是这类行波和杆塔顶部电位不同而造成的过电压比雷电直击时造成的过电压小很多,这样就可以保护输电线路不受雷电高压破坏。通过各类模拟实验可以得出,输电线路的电压是 100kV 甚至更高时,需要全线装设避雷线,保护角一般采用 20~30°,对于 500kV 及以上的超高压输电线路需要装设双避雷线,这时保护角一般采用 15°及以下。
3.2科学选点安装避雷器
输电线路附近的雷电活动有许多偶然性和不确定性,因此加强特殊区段管理,通过所维护历年雷击记录分析,雷击故障杆塔均处于多雷区或重雷区、山顶、坡度较大的山坡或山峭、附近有水系(河流、水库、鱼塘等)、周围有矿区、大档距、跨大沟等。同时分析雷电定位系统以输电线路杆塔附近地闪密度为依据分析各区段线路走廊的落雷情况,划分多雷区,结合雷电易击区段确定重点防雷杆塔,为日后扩大防雷范围提供判别标准,科学选点安装避雷器,对直线杆塔和耐张杆塔无引流绝缘子串的一般安装线路型纯空气间隙避雷器,对耐张杆塔有引流绝缘子串的一般安装线路型固定空气间隙避雷器。
结合巡视或安排雷电活动后对安装好的避雷器运作计数器进行防雷读数分析,也可安装避雷器计数器远传装置,对避雷器在该基杆塔的运行工况进行统计分析,为后期的防雷工作奠定基础。
3.3降低杆塔的接地电阻
输电线路雷击发生几率与其接地电阻成反比,当出现如下几点状况时,输电线路的接地电阻会有所增加:一是,受自然因素影响,当接地体被雨水冲刷,裸露在外无法与土地进行接触时;二是,化学降阻剂的使用,随着时间的推移,化学降阻剂在外部环境的作用降阻能力会逐步消退,由此便会导致接地电阻被增大;三是,接地体受外力作用而造成破坏,导致接地电阻被增加;四是,由于施工当中采用了化学性质不够稳定的降阻剂,接地体容易被腐蚀,尤其是在 PH 值小于 7 的土壤当中接线体发生吸氧腐蚀与电化学腐蚀的几率更高,腐蚀情况较为严重的容易导致腐蚀断裂,出现杆塔“失地”现象。
输电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,在运行中应加强接地电阻检测、对不合格电网进行开挖检查、及时修复破损地网、采用接地模块或连续伸长接地线来保证有良好的接地电阻。尽可能地降低杆塔的接地电阻 ,这是提高输电线路耐雷水平的基础,是最经济、有效的手段。
结语:
在目前输电线路的发展过程中,雷害是阻碍输电线路正常运行的最大障碍,我们要在明确输电线路雷害原因的基础之上,对防雷对策进行积极的探索,以此加强防雷手段的进步。可以通过更新避雷设施,提升避雷设备的防雷能力、加强对于输电线路所在区域的调研工作,注重避雷基本方法手段的掌握、加强对于输电线路的维护工作、加强对于输电线路的基本监测工作、输电线路的施工技术人员提升自身的综合素养、提前进行紧急预案的准备等多种方式对于输电线路的防雷问题进行改进,以此加强防雷措施的有效性,积累在输电线路方面防雷的基本经验,降低雷害事故,保证输电线路的正常工作。
参考文献:
[1]刘希和,李 凯,李艳平.电力高压输电线路雷害的预防[J].科技传播,2015.
[2]刘凯强.试析输电线路雷害原因及防雷措施[J].企业技术开发,2017,36(11):86~87+100.
[3]叶海宏.分析输电线路的防雷设施及其重要性[J].价值工程,2010.
论文作者:梁建磊
论文发表刊物:《基层建设》2019年第10期
论文发表时间:2019/7/4
标签:线路论文; 过电压论文; 杆塔论文; 防雷论文; 避雷线论文; 雷电论文; 雷害论文; 《基层建设》2019年第10期论文;