(国网河南省电力公司舞阳县供电公司 河南舞阳 462400)
摘要:新时期,社会用电需求逐渐增加,电力工程建设数量和规模也在逐渐扩大,与此同时,电网复杂性和不确定性加剧,电力调控难度越来越大。大数据技术在数据整合集成方面应用优势明显,其在电力调控中的应用空间广阔,因此,对大数据技术在电力调控中的应用方式进行详细探究具有十分重要的现实意义。
关键词:大数据技术;电力调控;应用分析
1导言
随着全球能源互联网及坚强智能电网建设的不断推进,各类新能源、分布式电源、电动汽车等不断接入,电网的复杂性和不确定性进一步加剧,电力调控变得日趋复杂,对电网安全、经济、可靠运行及用户服务水平提出了更高要求。而大数据技术在数据整合集成能力上表现优越,为其在电力调控中的应用提供了广阔空间。
2大数据的定义
大数据是指需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、 高增长率和多样化的信息资产。比较典型的大数据定义是 3V 定义,即规模性、多样性、高速性。规模性是指数据规模庞大,已经达到 PB 级以上;多样性是指包含各种数据类型,比如结构化数据、半结构化数据、非结构化数据等;高速性是指数据以数据流的形态迅速增长,数据处理速度达到高速实时处理。
3电网调控运行大数据分类及特征
在电网调控运行过程中,各类数据的来源有三种,分别为基础数据、电网运行及设备状态监测数据以及外部信息数据。三种不同来源的数据可以相互作用和影响,在促进电网稳定运行方面都发挥着十分重要的作用。在电网调控运行的多个数据种类中,结构化数据种类占90%以上,包括电网运行数据、负荷预测数据、基础数据等等,另外,现如今,非结构化数据也逐渐被导入至电网调控运行参数组成中,比如视频监控数据、图形图像处理数据等等。
4电力大数据的核心技术
(1)数据集成管理技术。在电力大数据中,数据集成管理技术的是对不同数据源、特征形式的数据进行收集和整理,在对数据进行转换、加载后,得出全新的数据源,然后载对全新的数据源进行管理和,并对外提供服务。数据集成管理技术可以为电力企业提供新的服务和应用功能。(2)数据分析技术。在电力大数据中,数据分析技术有很多种,包括机器学习技术、数据挖掘技术等等,通过数据分析,可以提取大数据中的有用信息。机器学习技术是人工智能的核心,其能够改善计算机系统使用性能,主要被应用于电力系统暂态稳定性评估、电力设备运行状态检测等方面。数据挖掘技术在实际应用中可以有效处理复杂的数据结构形式,对海量数据进行分析处理,进而提升数据质量,主要被应用于电力行为预测中。(3)数据处理技术。电力数据处理技术可以分为分布式计算技术、内存计算技术以及分布式数据流处理技术。其中,分布式计算技术指的是通过应用网络技术,将电力系统中的计算机进行连接,进而形成超级计算机,对大数据进行存储和计算;内存计算技术指的是将已经收集到的大数据存储在内存中,然后直接对大数据进行计算和分析;分布式数据流处理技术具有实时性、伸缩性和开放性特征,可以对电力系统中的动态数据进行实时处理。(4)可视化技术。可视化技术指的是通过应用图形化处理技术,将各类信息以比较容易理解的形式来展现,便于运行管理人员能够准确掌握各类信息。可视化技术的应用目标是发现信息,洞察数据,然后再做出决策。通过将可视化技术应用于电力系统状态实施监测中,能够有效提升电力系统自动化水平。
期刊文章分类查询,尽在期刊图书馆
5大数据技术在电力调控中的应用方向
电力系统是实现电能生产、传输、分配和消费实时平衡的复杂系统。随着全球能源互联网及坚强智能电网建设的不断推进,各类新能源、分布式电源、电动汽车等不断接入,对电网安全、经济、可靠运行及用户服务水平提出了更高要求,持续提高电力调控智能化水平势在必行,而大数据技术在数据整合集成能力上表现优越,为其在电力调控中的应用提供了广阔空间。
5.1提高电网运行安全性、经济性、可靠性
大数据技术在负荷预测、智能告警、电网状态监测与诊断等方面广泛应用,将有利于提高电网运行安全性、经济性、可靠性。在负荷预测方面:负荷预测对于电力系统安全、经济、可靠运行有重要作用,负荷预测精度对电网计划检修安排、安全裕度校核有较大影响。分布式电源、电动汽车的接入使得负荷的规律性变差,负荷预测精度难以提高;同一地区负荷中包含有不同负荷特性的各类负荷,本身的负荷特性和变化规律各不相同,且缺乏气象、地理、经济等数据信息,负荷预测精度不理想。引入大数据技术,整合集成气象、地理、经济等其他行业数据信息,为提高负荷预测精度带来新的可能。在智能告警方面:随着电网规模不断扩大,调控中心监控信息量不断加大,调控员淹没在海量的告警信号中;各种设备缺陷、告警信号、视频监控信息、历史修试记录等没有集成,存在重复安排处理的现象,仅凭历史经验人工进行分析判断,处理效率低下。引入大数据技术,将分散在调控、输变电运维检修等不同部门不同专业的信息进行集成整合,为实现高效的智能告警提供可能。在电网状态监测与诊断方面:目前侧重于对单个设备监测,各个设备之间的监测数据没有共享,无法对整个电网设备全局进行分析,需要人工干预判断;另外,设备的基本试验参数、运行缺陷、修试记录等信息集成后,数据量大,分布离散,传统的数据分析方法处理效率低下。利用大数据技术对这些海量数据进行综合分析,实现设备状态的实时监视和趋势分析,有利于提高电网设备监测水平。
5.2提升客户用电服务水平
大数据技术在用户需求侧管理、计划检修安排等方面广泛应用,将有利于改善用户用电体验,提高客户用电服务水平。在用户需求侧管理方面:通过分析用户历史用能数据,归纳消费特征,促进用户需求侧管理,合理引导错峰用电,削峰填谷,提高地区负荷率水平,避免负荷大起大落,造成局部电压变化过大,影响大工业客户安全生产。引入大数据技术,将影响客户用能方式和水平的经济、政策、气候等影响因素及历史用能数据整合集成,为用电客户打造专属的负荷计划,提升用户需求侧管理水平。在电网计划检修方面:重复停电、延期送电等情况时有发生,因电网设备临时缺陷引起的非计划检修消缺工作,对客户供电可靠性及生产用电安排有较大影响,间接影响客户用电体验,降低了客户满意度。引入大数据技术,将客户设备检修计划、客户用电需求、电网设备检修计划、电网设备缺陷数据集成整合,统筹安排,减少重复停电次数,降低非计划检修概率,为电网安全可靠供电及用户合理生产用电创造良好的基础,最终提升用户服务水平。
6结语
综上所述,在电力调控中,数据是调控价值的核心体现,随着电力系统的快速发展,电网运行中的数据种类、数量逐渐增多,通过将大数据技术应用于电力调控中,能够有效提升电力调度的智能化和自动化水平,提升电力调控工作效率,促进电网可持续发展。
参考文献:
[1]周小明,陈郑平,陶蕾,陈雪净.基于电力调控大数据平台的指标展示应用研究[J].电力信息与通信技术,2016,14(12):15-19.
[2]张秀东.电力调控大数据集成及管理技术研究与应用[D].哈尔滨工业大学,2016.
论文作者:张祥云1,刘伟霞2
论文发表刊物:《电力设备》2018年第5期
论文发表时间:2018/6/14
标签:数据论文; 电网论文; 技术论文; 电力论文; 负荷论文; 设备论文; 分布式论文; 《电力设备》2018年第5期论文;