摘要:国内电连接器的总体质量状况和技术水平与国际主流厂家相比,还有较大距离,特别在标准化生产管理方面,尤其不理想。造成国产电连接器质量参差,低水平质量问题时有发生、反复发生,使质量管理工作受到频繁扰乱,有限的资源不能更好的集中在电连接器可靠性的提高研究上。因此了解和研究电连接器的常见失效模式,是质量管理工作走出困境的基础,也是电连接器用方选型、质检、使用(包括加工)、分析的基础。
关键词:电连接器;到寿;失效模式
1使用到寿失效的原因
1.1磨损
1.1.1氧化磨损
插拔过程摩擦破坏氧化层,暴露出金属后重新形成新的氧化层,继续遭到摩擦破坏,使表面金属逐渐损耗,此为氧化磨损的过程。行业内通常用镀金工艺避免氧化,减少氧化磨损,但镀层被破坏后,氧化速度将显著上升。氧化磨损涉及到多个材料和工艺要素:接触件表面镀层主要是防止电连接器在使用前或静态贮存期间氧化,同时必须兼顾导电性。一旦经过多次插拔,镀层必然受损,这就涉及到镀层的厚度和耐磨性。镀层的消耗使设计方必须考虑底材的耐磨性和抗氧化抗腐蚀性。所以厂家选材必须在成本和诸多性能中找到平衡点,本身就是一个妥协的过程。因此用方必须清醒,不同的厂家的产品,其可靠性有可能存在较大落差,要实际观察产品的镀层,有没有镀层以及镀层的完整性。由于镀金一般是化学镀工艺,所以接触端的插孔和焊接端的焊杯是镀金的薄弱环节,由于上述的两种结构是相对封闭的状态,内部溶液不易流通,所以容易镀金失败,外观检查可以发现插孔或焊杯内部存在色差。用方可借助显微镜等工具观察这些细节以评判厂家的工艺水平。
1.1.2咬合磨损
咬合磨损是指接触件表面基体金属相互结合、粘着,后随相对滑动而被撕裂,往复循环,造成的磨损。咬合磨损的程度与接触正压力成正相关关系,因此线簧插孔的咬合磨损相对要轻微很多。咬合磨损只发生在滑动摩擦条件下,因此也与滑动顺畅程度有关,接触件表面加工得更光滑或在接触部位涂覆润滑剂可有效降低插拔滑动磨损。用方可实际观察电连接器接触件表面毛刺的严重程度以评判厂家的工艺水平。
1.1.3热磨损
热磨损的必要条件是极高的、足以使表层金属软化的热量,主要来源于摩擦与大电流。由于电连接器一般插拔速度较低,不足以摩擦生高热,在功耗小的弱电领域,热磨损可以忽略。
1.2疲劳
使用到寿的另一考量因素“疲劳”是指金属的形变疲劳,与上文的“表面磨损疲劳”是不同的两个概念。插孔簧片受与插针接触面的反作用力长期作用,逐渐形成永久性变,抗张强度降低,接触压力变小,影响接触电阻或接触件啮合稳定性。金属疲劳受材料硬度、热量,受力时间等因素影响,也是必然存在的,不可逆的变化。金属疲劳尤其受接触压力的影响:接触压力不足,接触件表面氧化层不能受到足够的磨损破坏,而弱电又不足以击穿氧化层,这时容易发生接触不良;接触压力过大,一是造成接触材料磨损严重,导致过早出现镀层与基材的损耗;第二个隐患是插孔簧片受反作用力(与接触压力成对)过大,逐渐产生永久变形,即金属疲劳。金属疲劳的程度与啮合时间和插拔次数呈正相关关系。所以如何设计接触压力,对厂家来说也是两难,而且越到电连接器使用寿命后期,越是两难,氧化越来越严重容易造成接触不良,疲劳也越来越明显,所以电连接器的过寿使用隐患很大。总之,磨损和疲劳共同“侵蚀”电连接器的机械性能,使材料变少、变薄、变弱,最后影响机械联接和电连续性。
1.3插拔寿命
无论是方形插孔还是圆形开槽式插孔,其接触对理论插拔寿命都只有500次,不是线簧插孔,接触对插拔寿命没有质的飞跃(线簧插孔理论插拔寿命可达十万次)。这就提醒用方注意,减少不必要的插拔次数。设计师也需用六性设计中的保障性和维修性应对寿命低的风险,频繁插拔的电连接器(测试、调试用)不安排在难以更换的部位(如电路板),或适当运用转接器、电缆组件。
期刊文章分类查询,尽在期刊图书馆在即将到寿时,留意电连接器互换时的插拔力、金属粉屑量、外壳变形程度、螺纹旋拧紧涩程度、镀层颜色形貌等性能和外观特征,一旦发生较大的变化,就意味着到寿。电连接器寿命到了,就要及时更换,不要想当然的继续使用。在此还要特别提醒,即使是线簧插孔设计,也只是增加了接触件的插拔寿命,提高接触可靠性。电连接器整体的使用寿命,因使用线簧插孔而增加的程度是十分有限的。电连接器整体,除了接触件外还要考虑壳体磨损和疲劳、绝缘体磨损和老化等各方面因素,其使用寿命不可能跟随线簧接触件达到十万次的理论值,还要具体了解。
2贮存到寿失效原因
2.1金属氧化
电连接器处于贮存状态,接触件暴露在空气中,没有插拔摩擦时时破坏氧化层,有利于氧化层生长堆积。所以对贮存态的电连接器来说,氧化应是最为致命的,有可能导致失效的首要因素。氧化性气体(O2、SO2)和金属发生氧化反应,或金属在潮湿环境下与空气中的腐蚀性气体(SO2、H2S、NO2、Cl2等)发生电化学腐蚀,形成体积略微膨胀的成分复杂的金属氧化物。这一层化合物将极大地提高接触电阻,造成接触不良。在长期的贮存条件下,镀金工艺也并非万能。在镀金表面微孔腐蚀的作用机理下,镀金层表面形成腐蚀晕圈,即通常观察到的色斑或黑点。有研究表明,微孔腐蚀处岛状污染物以及周围的腐蚀圈处的直流接触电阻会出现明显的上升甚至失效。金属氧化速度主要与温度、湿度、空气成分有关,应保证低温、低湿、相对封闭的受控的贮存环境。
2.2受潮
受潮对电连接器最严重的影响在于加速氧化腐蚀和霉菌滋长。氧化腐蚀前文已经阐述过;而发霉现象给人的视觉冲击比较大,一经发现必然报废,涉及管理问题,失效分析意义不大。电连接器受潮,一般认为会对电连接器的绝缘性能影响较大,这里存在误区。电连接器受潮固然是会降低绝缘电阻与抗电强度,但是从绝缘电参数的下降到绝缘失效是有一段距离的。在实际使用和试验的过程中,绝缘失效的占比并不高,特别是弱电领域用低频电连接器,本身对绝缘性能的要求就比较低,也不涉及高电压,绝缘失效的案例就很少。绝缘失效的案例多与金属碎屑有关,与受潮无关。足以使电连接器发生短路、击穿飞弧等绝缘失效的潮湿条件是,具有极高的相对湿度、能使电连接器表面经常性的发生凝露的空气环境,但这种极端环境不能作为失效分析的常规考虑因素。
2.3绝缘体老化
电连接器的绝缘结构普遍使用塑料、橡胶材料。橡胶、塑料及其他高分子聚合物在成型、贮存和使用过程中会发生结构的变化,逐渐失去应用价值,这种现象称为高分子材料的老化。主要的老化特征包括变色、变粘、裂纹、脆化、硬度变化等,同时可能伴随着绝缘电阻、击穿电压等电性能的变化。发生上述变化的原因是各种各样的,外界的作用可概括为物理因素(热、光、应力、电场、射线等)、化学因素(氧、臭氧、重金属离子、化学介质)及生物因素(微生物、昆虫的破坏)。在外界作用的诸因素中,以光、氧、热三个因素最为重要,它们造成聚合物的降解。绝缘体老化导致失效的案例占比比较少,我只接触过两例。一例是橡胶圈老化,肉眼可见小裂纹、变脆,弯曲断裂;一例是库存多年的低频矩形连接器壳体老化。该系列连接器无金属外壳,绝缘体即为连接器的结构主体,由于库存多年,塑料老化变硬、变脆,但常规检测不能发现机械性能问题。一直到使用时,由于紧固部位是螺钉铆紧,大力矩转化为紧固面的大压力,紧固应力区域开裂、崩缺掉块,才暴露出塑料老化问题。绝缘体贮存老化失效的问题少见,其原因在于贮存管理。时间是绝缘体老化必不可少的条件,军用电连接器一般有严格的贮存管理制度,一般贮存期5~10年就要报废了;而民用电连接器一般库存积压现象较少,且更新换代快,调用库存多年的型号产品的情况较少,所以一般不会暴露绝缘体老化问题。但若存在非常规的,甚至违反规定的操作,则会使质量管理状态不稳,这个时候需要小心。除此以外,电连接器贮存管理应避开阳光直射和高温等外界不良因素。
3结论
本文探讨的是电连接器到正常使用寿命时的失效模式,目的是要电连接器的选型方与使用方加强电连接器的寿命意识,防止不正确的使用、贮存造成“折寿”,以及及时更换防止过寿使用。
参考文献:
[1]潘骏,靳方建,陈文华,钱萍.电连接器接触件结构分析与插拔试验[J].中国机械工程,2013,24(12):1636-1641.
[2]刘娟.电连接器步进应力加速退化试验技术的研究[D].浙江大学,2013.
论文作者:刘阳,崔珊
论文发表刊物:《电力设备》2017年第26期
论文发表时间:2017/12/31
标签:连接器论文; 磨损论文; 镀层论文; 插孔论文; 金属论文; 插拔论文; 绝缘体论文; 《电力设备》2017年第26期论文;