我国数学教育应研究的几个问题_数学论文

我国数学教育应研究的几个问题_数学论文

我国数学教育应当研究的若干问题,本文主要内容关键词为:若干问题论文,数学论文,我国论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

      我们从数学课程与教材、数学教学、数学教育心理、数学教育哲学等四个方面,对1978年以来我国数学教育研究的基本情况作了比较系统的梳理和分析[1][2][3][4],并对一些重要的研究成绩作了评述,对30年来研究的不足作了分析和反思[5].本文在这个基础上,并结合国外的相关研究,从数学教育哲学、数学课程、数学教学、数学教学心理、数学教师专业发展等方面,提出我国数学教育应当研究的若干问题.

      一、数学教育哲学与数学课程设计

      哲学的作用就是为教育与课程理论提供思辨的前提,课程思想是哲学家的哲学观点在教育领域的延伸[6].课程设计必然受到哲学思想的影响.

      从课程的本体论基础看,唯心主义的本体论上强调先天理性和自由意志,偏爱文雅教育排斥经验与科学的重要性;唯实主义强调环境对心灵的影响,重视科学教育;实用主义主张心物交互作用,坚信活动课程的价值;存在主义强调经验的意义,主张培养学生完善人格,达到自我实现的课程观.那么就我国的课程设计来说,应当思考:我国数学课程设计应当是什么样的本体论基础,并对这种基础的合理性和可行性进行分析.

      从课程的认识论基础看,主要反映在对知识性质的不同理解上.对知识本质的不同认识会导致课程设计时对内容选择、内容编排的不同倾向性,就我国的课程改革而言,应当思考:选择什么数学认识论作为课程设计的基础是合适的;数学课程设计是基于一种数学认识论观点还是基于多种数学认识论观点.

      从课程的价值论基础看,数学课程目标直接反映数学教育的价值[7].对教育目的的认识涉及不同的价值判断:个人主义与社会主义、理性主义与功利主义、科学主义与人文主义、精英主义与平等主义、现时主义与未来主义等[8].结合我国国情,在课程编制中应当思考:数学课程目标的价值追求,实现这种价值追求的可能性和可行性.

      二、数学教育哲学引领下的数学教学

      Ernest基于数学哲学把数学教育观念分为5种类型:严格误导派、技术实用主义、旧人文主义、进步教育派、大众教育派[9],并分析了这些观念对数学教育产生的实质性影响.教师的教育观念制约自身的教学观念和教学行为,这是一个基本的共识.应当研究:我国数学教师的基本教育观念是什么;西方数学教育观对我国数学教学观产生了多大影响;实现教学目标的合理性教学观念体系建构;基于不同教学观的课堂教学结构分析;与不同教学内容适配的教学观念定位分析.

      三、数学文化在数学课程与教学中的渗透

      张维忠对数学、文化、课程三者的关系作了比较深入的研究,从数学文化角度考察其对数学课程发展的影响[10].需要进一步研究的问题:数学文化视野下的课程设计;数学文化视野下的教学范式;数学文化视野下的学习范式;数学文化视野下的教学评价等等.

      四、数学课程设计的教育理论基础

      课程改革必须考虑新课程设计的理论基础,新一轮课程改革的理论基础混乱是推行课程实施步履维艰的原因之一[11].在课程标准的修订和新一轮课程改革时要对如下问题进行深入研究:课程与教学理论的发展对数学课程设计的启示;数学课程设计的哲学基础、心理学基础、教学论基础、社会学基础研究;数学课程设计中理论基础的和谐性与协同性.

      五、化解课程实施中的教学基本矛盾

      课程的变革必然带来教学的变革,原来课程与教学中平衡的矛盾关系被打破,形成一些无法回避的新的矛盾[12][13],直接结果是给一线教师带来教学层面的操作性困难。需要研究:如何正确处理数学教学中的基本矛盾,包括文化教育与科学教育的矛盾、过程与结果的矛盾、实验与论证的矛盾、归纳与演绎的矛盾、理论与应用的矛盾、证实与证伪的矛盾等;平衡或消解数学教学基本矛盾的教学策略.

      六、课程实施的效果评价

      如果在课程目标的设置时没有充分考虑学习结果应当如何评价,即在课程目标设计时没有考虑到用怎样的方式去评价教学实际结果与课程目标的达成程度,评价手段、技术、工具能否真正反映课程目标的实现与否,那么这种课程设计会产生致命缺陷,因为学习结果评价反而会控制课程目标,形成新的教学目标而偏离原来的目标.在课程与教材设计时要做到课程目标设计与学习结果评价工具的研制同步,需要研究:课程目标变化之后评价理论的适应性;课程目标与评价工具的匹配性;数学考试命题的实质性改革等问题.

      七、隐性数学课程资源的开发

      隐性数学课程资源指不以文本形式显性表述的,而是潜藏于显性知识深层的隐性知识,如数学知识的文化元素、数学知识的过程元素、数学知识的逻辑元素、数学知识的背景元素等[14]。开发和利用隐性数学课程资源对于充分体现数学教育的功能有着十分重要的作用,需要研究:隐性数学课程资源的内容与范畴;隐性数学课程资源开发的策略与途径;隐性数学课程资源的课堂教学设计等.

      八、数学课程的深层次国际比较

      这些年关于数学课程的国际比较研究的文献比较多,包括课程标准的比较与教材的比较.综观这些成果可以感觉到多数研究都是针对教学理念、教学目标、教学内容、知识体系、习题数量与难度等内容展开的,缺少深层面的解析。数学课程的国际比较应当作一些深层面的工作,如:不同国家数学课程设计的理论基础(教育理论基础、心理学理论基础、社会学理论基础、数学教育哲学基础)比较;不同国家数学教材设计的文化因素分析;不同国家数学教材设计的隐性课程资源分析等等。

      九、数学教材编制的科学性

      数学教材编制的科学性,要以理论和实践两种途径作为检验标准。研究的问题有:知识展示逻辑顺序的合理性研究;知识展示的过程与结果如何处理;例题的选择与数量界定;习题的数量、质量的确定;不同学段教学内容的衔接等等.此外,需要研究数学教材编制与课程标准的一致性问题,这要研究一套评价工具.

      十、数学课程改革的实验研究

      数学课程改革的成功与否,是以教学实施效果为依据的。一方面要检验课程实施效果与课程标准的吻合程度;另一方面要验证课程实施的可行性问题,两方面的研究都需要进行实验研究。涉及的问题:课程实施过程中教师的教学观念、知识结构、教学模式的适应性;课程实施中学生的学习方式、课业负担、评价方式的适应性;有多少学生达到了课程标准规定的目标要求;课程实施中出现了哪些需要修订课程标准的问题等等.

      十一、教学基本理论对数学教学影响

      教学理论在不断创新,从行为主义创立到现在的100余年中,出现不同的教学理论几十种,应当梳理,这些教学理论对我国数学教学产生了什么样的影响;中国数学教学是受儒家教学思想影响大还是受西方教学思想影响大.另一方面,我国数学教育是否形成了自己的理论.对这些问题需要做出深层次分析,对一些做法、经验加以提炼.

      十二、合作学习的实证研究

      合作学习是以建构主义和情境认知理论为基础的,需要思考:合作学习是否适合数学学习;数学合作学习的前提条件是什么;数学合作学习人数应为多少才能使教学效果最佳;哪些内容利于合作学习哪些内容不利于合作学习;合作学习适合哪类学生学习.对于这些问题,应当结合实证而不是纯粹思辨的方法进行研究.

      十三、有效教学的实证研究

      理论思考的问题:数学有效教学的标准是什么,数学有效教学的特殊性体现在哪里.实证研究的问题:同课异构的教学有效性比较;“讲学稿”教学模式的有效性;“翻转课堂”教学模式的有效性;练习效应与教学的有效性;变式教学的有效性;样例学习的教学有效性等等.

      十四、教育技术与课堂教学整合与优化

      教育技术的产生源于行为主义,如何对这种理论基础进行改造是应当研究的问题.需要思考:利用教育技术进行教学设计的理论基础分析;教育技术在代数课堂教学中的应用与影响;教育技术在几何课堂教学中的应用与影响;教育技术在概率统计课堂教学中的应用与影响[15]等等。

      十五、课堂观察维度与指标体系建构

      课堂观察是一种目前比较受追捧的研究方法,这是基于个案的实证研究.我们提出一个框架:从教师的数学观层面观察课堂及观察指标建构,从教学目的设计与实施层面观察课堂及观察指标建构,从教学内容的组织层面观察课堂及观察指标建构,从课程资源开发层面观察课堂及观察指标建构,从课堂操作层面观察课堂及观察指标建构,从教学效果层面观察课堂及观察指标建构.

      十六、陈述性知识与程序性知识的教学策略设计与实验

      认知心理学把知识分为陈述性知识和程序性知识,这种知识的分类主要是为了研究知识的表征和知识习得的心理差异.因此,在教学层面就应当思考:陈述性知识的教学策略设计;程序性知识的教学策略设计;促进陈述性知识向程序性知识转化的教学策略.并且应当对这些设计进行验证性实验。

      十七、概念图在数学教学中的应用

      概念图用于教学,国外的研究比较多,而且主要集中在科学(物理、化学、生物、地理)教学领域[16],在数学教学中的相关概念图应用研究很少,这是一个值得思考的问题,同时也是一个值得研究的问题.如概念图不同评价方式的比较[17];概念图作为评价工具在数学教学中的应用;概念图作为教学设计工具在教学中的应用;概念图作为学习工具在数学学习中的应用;使用概念图促进学生数学理解;使用概念图提高学生的解决问题能力;使用概念图促进学生的知识迁移等等。

      十八、中国数学教学经验提升和理论总结

      国内出现了较多的数学教育实验,如自学辅导、尝试指导—效果回授、问题—情境、GX、MM等,依据这些实验产生若干教学模式。在教学一线,许多教师也创建了数量众多的数学教学模式,但是,这些模式的国际影响并未显现,主要是我们的理论提升不够,模式的理论高度不够,普适性也有待验证.如何从教学实践中归纳和总结经验,打造我国数学教育的基本理论并将其推向国外,是我们必须研究的问题.

      十九、数学教学中的直观化与数学学习

      直观化与数学教学的关系研究是国外研究的一个热点[15].如下问题值得研究:直观化与问题解决:数学问题直观化程度的高低与问题解决成绩之间的相关性;空间问题复杂性程度对不同解题策略的选择的影响;问题的呈现方式(语言、阅读、图表)与学生解题策略选择之间的联系;样例的直观化对学习时间、认知负荷及解决迁移靶题成绩的影响。

      直观化与知识理解:教学中使用直观手段对不同年级学生知识理解的作用和差异;代数问题直观化对学生知识理解的作用;概率与统计问题直观化对学生知识理解的作用;如何使用教育技术进行体现直观性的有效教学设计.

      直观化与个体差异:不同学业水平学生在使用直观策略方面的差异;直观教学对不同学业水平学生学习的影响;男生与女生使用直观策略的差异;不同年龄阶段学生使用直观策略的差异;不同民族学生使用直观策略的差异.

      直观化与数学能力:直观化教学能够促进某些数学能力(逻辑思维能力、归纳思维能力、空间想象能力)的发展还是阻碍某些数学能力的发展;直观化教学与个体数学活动经验形成的内在联系;直观化教学与创新思维能力发展的内在联系.

      二十、数学推理的心理研究

      推理的心理学研究主要集中在演绎推理方面[18],数学推理是数学学习的主要内容,但是关于数学推理的心理学研究太少。下面是一些尚待研究的内容:

      认知结构与数学推理的关系(完善的认知结构是否有助于数学推理,完善的认知结构是有助于演绎推理还是有助于类比推理);陈述性知识与程序性知识对数学推理的影响(在陈述性知识和程序性知识中,哪一类知识对数学推理的影响更大),数学学习文本的不同展示方式对数学推理的影响(增强文本直观性对数学推理是否有促进作用,增加文本中的多余干扰信息是否会对数学推理产生不利影响);数学演绎推理与归纳推理的关系(个体演绎推理与归纳推理的相关性,演绎推理的增长对归纳推理产生促进作用);个体元认知水平对数学推理的影响(有高自我监控能力的学生是否就有高水平的推理能力,反思与推理之间是什么关系);数学理解水平与推理水平的关系(理解水平是否与推理水平存在线性关系);数学焦虑与数学推理的关系(数学焦虑在何种水平最利于数学推理).

      中学生数学推理的发展研究(中学生数学推理发展的关键期,男女生数学推理的发展是同步性,数学推理能力发展与知识的增长的关系);几何推理与代数推理的关系(几何推理的特征,代数推理的特征,几何推理与代数推理之间的关系);推理教学与推理学习的关系(是否有必要专门讲授形式逻辑的相关知识,教师的推理能力对学生数学推理能力增长产生影响,在几何教学中采用什么样的教学设计最利于发展学生的推理能力).

      二十一、数学学习与迁移

      关于数学学习的迁移,国内以莫雷教授团队做的工作最好[19].但更多的问题需再思考和研究。

      样例学习与迁移:样例变式形式、难度、信息不全、信息多余等对学习的不同影响;源题与靶题的相似程度、靶题的变异程度对问题解决有何影响;如何分解问题的子目标更利于学生学习;在样例中设计穿插了一系列反省问题,引发学习者自我解释,不同的反省问题是否会产生不同学习效果;多重样例的数量变化、形式变化对学习会产生的影响,什么呈现方式最利于学生学习;不同年级学生是否应当采用不同的样例呈现方式会更利于学习.

      迁移现象的多因素分析:其一,过去关于学习迁移的研究,几乎都是围绕学习材料等外部因素展开的,应当重点考虑学习者内部因素对迁移的影响.其二,迁移不可能局限于单一因素的影响,要研究多因素对迁移的影响,这方面需要做大量的工作.

      二十二、学生认识信念对数学学习的影响

      个体认识信念的研究主要有三种取向:个体认识论的发展研究、个体认识的信念系统研究和个体认识的元认知过程研究[20]。关于学生认识信念的研究,应当围绕下面问题展开:认识信念的测量[21];认识信念与学习态度的关系;认识信念与学习自我效能感的关系;认识信念与学习动机的关系;认识信念与认知因素的关系,具体地说,认识信念影响哪些认知因素的发展;影响学生认识信念发展的因素分析。

      二十三、非认知因素对数学学习的影响

      以往的研究多是聚焦于单个非认知因素与学习的关系,采用的方法以测量为主,表现出研究方法的单一性.应当关注:非认识因素中几个要素的交互作用对数学学习的影响;非认知因素的课堂观察研究;学生非认知因素发展规律研究。

      二十四、学生数学认知水平的发展

      林崇德等做了系统的研究,包括对中小学生数学思维品质、归纳推理、演绎推理、概括能力、运算能力、空间能力的测量和实验研究,得到一些有意义的结论[22]。但是,整个研究方法是建立在测量基础之上的,认知水平的划分有一定时代性局限.随着时代的进步,我们需要建立一套完整的量表,作出准确的认知水平划分,系统研究从学龄前儿童到高中毕业学生的数学认知发展水平,摸清学生数学认知发展的规律、认知发展的关键期与转折期.

      二十五、高级数学思维

      从过程概念向定义性概念的过渡,就是初级数学思维向高级数学思维的转变.高级数学思维有两个特征:概念有准确严谨的数学定义,建立在此基础上的定理的逻辑演绎[23]。高级数学思维是国外学者提出的一个概念,对它的界定不是十分清晰.对这个问题的研究应当思考如下一些问题:高级数学思维的内涵是什么;高级数学思维的特征是什么,它是否只具备形式定义和演绎论证两个特征;是否常量数学对应的是初级数学思维,变量数学对应的是高级数学思维;学生高级数学思维的形成和发展有什么规律;从初级数学思维向高级数学思维转变,学生会出现什么思维障碍,如何消除这些障碍;高级数学思维是否存在不同的水平,如何界定这些水平;高级数学思维的心理机制是怎样的;测量高级数学思维的量表编制;高级数学思维的培养策略等等.

      二十六、学生学习心理的多因素之间关系研究

      以往的研究主要是讨论两个心理因素之间的关系,作为推广应当考虑:多种认知因素的交互作用对数学学习的影响;多种非认知因素的交互作用对数学学习的影响;认知因素与非认知因素的交互作用对数学学习的影响;认知因素之间的相互影响、认知因素与非认知因素之间的相互影响、非认知因素之间的相互影响等等问题。

      二十七、数学概念与命题认知的相关问题

      概念学习的研究问题:概念形成与概念同化的教学效果差异比较;概念域(系)[24]形成的基本规律;概念理解的水平界定;概念应用的水平划分;概念学习对命题学习的影响;从逻辑思维角度分析概念理解的心理障碍;从概括水平角度分析概念理解的心理障碍;从归纳思维角度分析概念理解的心理障碍等等.

      命题学习的研究问题:下位学习与上位学习的命题教学效果差异比较;命题域(系)[24]形成的基本规律;命题理解的水平界定;命题应用的水平划分;命题证明的学习心理分析;命题的变式应用;从逻辑思维角度分析命题应用的心理障碍;从概括水平角度分析命题应用的心理障碍;从归纳思维角度分析命题应用的心理障碍等等.

      二十八、数学解题认知的相关问题

      解决问题的心理研究:解决应用问题的心理表征;影响模式识别的外部条件分析;影响模式识别的心理因素分析;自我监控对解决问题其他心理因素的影响;个体CPFS结构对解决问题的影响;共通任务能力(数学阅读能力、数学概括能力、数学变换能力、逻辑思维能力、空间思维能力)对解决数学问题的影响。

      二十九、数学阅读的相关问题

      数学阅读研究的兴起较晚,许多东西还未搞清楚。需要研究:数学阅读能力与知识理解的关系;数学阅读与问题解决的关系;不同文本展示对数学阅读的理解;数学阅读水平的发展;影响数学阅读的心理因素分析;数学阅读能力与其他数学能力的关系研究.

      三十、数学教师的知识结构

      教师的知识研究主要分为三个领域:教师知识的要素与结构,教师知识结构对教学的影响,教师知识结构的发展.虽然有了许多研究结果,但主要是国外学者研究的结论,在国内应当对其进行更深入地探讨,如数学教师知识的组成要素、知识结构的形态、知识结构的发展;专家型教师与新手教师的知识结构差异;教师知识结构中影响教学的主要因素分析;数学教师的知识结构与教学设计的关系;数学教师的知识结构与教师自我监控能力的关系;数学教师的知识结构与教师自我意识的关系;数学教师知识结构与教学效能感的关系等等.

      三十一、数学教师的PCK(PCA)

      关于教师学科教学知识(PCK)的研究成为这几年学界讨论的热点,综观研究概况,可以看出这方面的议论性研究比较多,实证研究太少.教学PCK的研究必须走进课堂,主要采用课堂观察的方法或实验干预方法来做,深入研究如下问题:数学教师的PCK形成机制;从PCK到学科教学能力(PCA)[25]的理论思考;PCA的基本构成要素;数学教师PCA的外部表现形式;数学教师PCA(PCK)对课堂教学的影响;数学教师PCA(PCK)对学生学习的影响等等。

      三十二、教师数学教学认识信念

      研究的问题:教师数学教学认识信念的结构分析[26];教师数学教学认识信念对教学行为的影响;教师数学教学认识信念对学生学习信念的影响;教师数学教学认识信念对课堂教学效果的影响;教师数学教学认识信念与教学风格的关系;教师数学教学认识信念与实现教学目标的偏差;教师数学教学认识信念与教学评价观的内在联系.

      三十三、数学教师培训

      这些年,在“国培计划”的引领下,出现了不同层次的教师培养活动,于是也就出现许多值得研究的问题:调查不同层次教师培训的效果;不同层次、不同类型数学教师培训的模式探析;不同层次不同类型数学教师培训的有效策略;数学教师培训的内容分析;各地数学教师培训(培训目标、培训内容、培训方式、培训者的素质、培训条件、培训效果)的比较;国外教师培训对国内教师培训的启示等等.

      三十四、师范院校课程与教学改革

      中小学的课程改革持续推进,高等师范院校的课程则几十年一贯制,两者的不协调性已经变得十分突出.要思考师范院校的数学课程改革问题:与中小学课程改革相协调的师范院校课程体系建构;与中小学课程改革的师范院校教学模式创新;与中小学课程改革相适应的师范院校学生能力提升;与中小学课程改革相适应的师范院校教师观念转变等等.

      三十五、数学教育方向研究生培养体系改进与完善

      目前,国内许多师范大学都成为数学教育硕士与博士研究培养单位,有必要加强这方面的研究:如数学教育研究生培养目标的确定;数学教育研究生课程内容的规范;不同师范大学数学教育研究生培养的特色定位;国内数学教育研究生培养的国际接轨;我国数学教育研究生培养的回顾与反思等等。

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

我国数学教育应研究的几个问题_数学论文
下载Doc文档

猜你喜欢