生物标记物诊断蒽环类化疗药物致心脏毒性的研究进展论文_滕彦玲1,孟照辉2

生物标记物诊断蒽环类化疗药物致心脏毒性的研究进展论文_滕彦玲1,孟照辉2

1.昆明医科大学第三附属医院 云南省肿瘤医院 心功能科昆明 650000;

2.昆明医科大学第一附属医院 心内科昆明 65000

蒽环类药物作为抑制细胞生长的抗生素,在半个世纪前被发现,当今以多柔比星为代表的抗肿瘤化疗药物已广泛应用在临床实践中。不幸的是,该类药物引起的心脏副作用使肿瘤患者心血管死亡风险大于肿瘤复发。尽管心脏肿瘤学近年来已备受关注,然而由于没有能力充分预测肿瘤治疗所带来的相关心血管副作用,导致了低估或过度诊断心脏毒性,甚至有时不恰当的终止了肿瘤患者的生命救治。《2016欧洲心脏病学会癌症治疗与心血管毒性实用指南》将肿瘤相关心血管毒性分为9类:心功能不全和心力衰竭(心衰)、冠状动脉性心脏病、瓣膜疾病、心律失常、高血压、血栓栓塞性疾病、周围血管病和卒中、肺动脉高压以及其他心血管疾病。抗肿瘤药物挽救生命的同时预防或减轻心脏毒性,促进潜在心血管副作用与抗肿瘤治疗最大效益的平衡,是心脏肿瘤学的治疗目标[1-5]。现对生物标记物诊断蒽环类化疗药物所致心脏毒性的研究进展做一综述。

1.传统生物标记物 国内外学者对蒽环类药物引起心脏损伤的机制做了大量研究,一般认为氧化应激和线粒体损伤为主要因素[6]。肌钙蛋白作为心脏唯一的结构蛋白,是心肌特殊同源异构体,缺血使细胞膜的完整性发生改变,溶胞浆池快速耗尽。当心肌细胞受到破坏时,进一步使肌钙蛋白释放入血。因此肌钙蛋白升高提示心肌损害,超敏肌钙蛋白因更敏感被广泛应用作为心肌缺血的早期标志。研究发现所有蒽环类药物治疗患者中Hs-cTnT值均正常,且在不同累积剂量分组中其数值并无区别,甚至当NT-proBNP升高和/或EF中度降低时,其值仍正常[7]。与之相似的研究,对比NT-proBNP和cTnT值对预测迟发性心脏毒性的价值,发现所有患者中只有NT-proBNP值异常,且在该值升高的亚组中,LVEF值下降更明显[8]。这表明了cTnT和Hs-cTnT并不是监测迟发性心脏毒性的理想敏感指标。但值得关注的是cTnT可以作为急性心脏毒性的检测指标,有研究发现在cTnT升高的患者中,LVDD在6个月时有明显改变(P=0.0026),而在NT-proBNP明显升高的患者中,并未观察到任何ECHO值的改变[9]。将阿霉素暴露于人类胚胎干细胞,结果cTnT在细胞培养基中呈急性毒性反应和剂量依赖,但在恢复期cTnT的早期应答表现并不明显[10]。可见cTnT与心脏超声在监测心脏毒性方面具有较强相关性且可作为急性毒性反应的监测指标,但它并不是迟发性毒性反应的理想指标。单中心研究显示,对于那些接受高剂量联合化疗的患者而言,cTnI指标升高对心功能不全有潜在预测价值,在接受了曲多珠单抗特别是之前接受过蒽环类化疗药物治疗的患者中,cTnI的升高提示可能进展为心衰,且不予抗心衰治疗的话,病情将不可逆[11-12]。神经肽类被广泛应用于心衰的预测,甚至轻度异常都能监测高危患者并指导治疗。然而BNP和NT-ProBNP在监测心脏毒性方面也许有用,但常规监测高危患者的应用价值方面尚未得到广泛认可。有研究发现化疗前血浆NT-proBNP在正常范围,但在第一次化疗后数值明显升高(P=0.02)可见NT-proBNP能够早期检测心脏毒性[13]。Logistic回归分析显示,血浆NT-proBNP是唯一与收缩功能障碍相关的心脏生物标志物,它可作为可靠和敏感的检测早期阿霉素所致心肌损害的标记[14-15]。相较以上两种生物标记,CK-MB更为广泛应用于临床常规监测心脏毒性,Francesca[16]等发现HER+乳腺癌患者中,CK-MB数值在化疗后3月升高,6月-12月趋于稳定,但在HER-患者中,其数值在3月轻微升高,6月达顶峰,12月趋于稳定,当CK-MB数值>15pg/ml时,出现重度毒性反应。但相较NT-proBNP和cTnT,CK-MB并不是监测迟发性心脏毒性的敏感指标。

2.新的生物标记 近年新的生物标记物进入大家的研究视线,其中最引人瞩目的当属MicoRNA家族。MicroRNA是心脏发育和功能的重要调节因子,它跨越心肌细胞的整个生命周期,包括增殖、肥大、凋亡,可以促进PSC CMS的成熟,特定MicroRNA的生物关联研究揭示了心功能和心脏毒性的关系[17]。目前研究发现的如(MiR-34a、MiR-34b、MiR-187、MiR-199a、MiR-199b)等在使用阿霉素早期出现异常表达,其中MiR-182-5p和MiR-4423-3p在用药过程中表达持续上调[18-19]。其它生物标记如:MPO、Galectin-3、CPR、GDF-15、GPBB、H-FABP等近年来也有少量研究。研究发现蒽环类药物使用3个月时,CRP、GDF-15、MPO、PlGF和sFlt-1水平升高。当TnI>121.8mg/l、MPO>422.6pmol/l时,46.5%患者有心脏毒性危险。对75名乳腺癌患者持续监测3-15个月,发现到第三个月Galectin-3水平升高,GDF-15、PIGF持续升高至第15个月,可见GDF-15、PIGF与迟发性心脏毒性可能有关[20-21]。Galectin-3被巨噬细胞表达,与心脏成纤维细胞的分化和胶原形成有关。Boxte[22]等发现有7.3%患者经阿霉素治疗后Galectin-3水平升高。Arslan[23]等发现与对照组相比,所有使用蒽环类药物患儿GDF-15均明显升高(P=0.027),该研究认为GDF-15可作为监测心脏毒性的生物标记物。另外对GPBB和H-FABP的研究发现,体外动物实验中25%血清H-FABP浓度升高(P<0.05)而临床监测发现17%患者使用阿霉素后GPBB升高,且GPBB升高与左室舒张功能异常高度相关(P=0.0001),H-FABP仅在1%患者中轻度升高[24]。可见相较H-FABP,GPBB指标升高可作为阿霉素致早期心脏毒性的敏感监测手段。其它的研究发现78%患者蒽环类化疗后hsCRP浓度升高,但与LVEF下降无相关性[26]。以上如此繁杂的MicoRNA及其它生物指标目前尚未被广泛研究,但现有的少量研究已振奋人心,未来期望更多的研究致力于监测肿瘤患者化疗相关所致心脏毒性。

期刊文章分类查询,尽在期刊图书馆

参考文献:

[1]Salazar-Mendiguchia J,Gonzalez-Costello J,Roca J,Ariza-Sole A,Manito N,Cequier A,Anthracycline-mediated cardiomopathy:basic molecular knowledge for the cardiologist. J. Arch Cardiol Mex 2014;84:218-23.

[2]Lu P. Monitoring cardiac function in patients receiving doxorubicin. J. Semin Nucl Med 2005;35:197-201.

[3]Yeh ET,Bickford CL,Cardiovascular complications of cancer therapy:incidence,pathogenesis,diagnosis,and management. J. Am Coll Cardiol.2009;53(24):2231-2247.

[4]Zamorano JL,Lancellotti P,Rodriguez MD,et al.2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology(ESC). J Heart Fail,2016,21;37(36):2768-801.

[5]Ewer M,Gianni L,Pane F,et al. Report on the international colloquium on cardio-oncology(rome,12-14 march 2014).J.Ecancer 2014;8:433.

[6]Milanthy S. Pourier,Livia Kapusta et al. Values of high sensitive troponin T in long-term survivors of childhood cancer treated with anthracyclines. J.Clin Chim Acta.2015;441:29-32..

[7]S Romano,S Fratini,E Ricevuto,et al. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicuty in breast cancer patients .J. Cancer. 2011;105(11):1663-1668.

[8]Abhidha Malik,Pamela Alice Jeyaraj,et al. Are Biomarkers Predictive of Anthracycline-Induced Cardiac Dysfunction?J.Cancer Prev.2016;17(4):2301-2305.

[9]Gustav Holmgren,Jane Synnergren,Yalda Bogest?l et al. Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells.J .Toxicology.2015;328:102-111.

[10]Cardinale D,Sandri MT,et al Left ventricular dysfunction predicted by early tropin I release after high-dose chemotherapy.J.Am Coll Cardiol 2000;36:517-522.

[11]Cadinale D,Colmbo A,et al.Trastuzumb-induced cardiotoxicity:clinical and prognostic implications of troponin I evaluation.J.Clin Oncol 2010;28:3910-3916.

[12]Ekstein Sivan,Nir Amiram,et al.N-te minal-proB-type natriuretic peptide as a marker for acute anthracycline cardiotoxicity in childen.J. Pediatr Hematol Oncol. 2007;29(7):440-444.

[13]Caram MEV,Guo C,Lega M,et al. Doxorubicin-induced cardiac dysfunction in unselected patients with a history of early-stage breast cancer. J. Breast Cancer Res Treat.2015;152(1):163-172.

[14]Kouloubinis Alexandros,Kaklamanis Loukas,et al. ProANP and NT-proBNP levels to prospecitively assess cardiac function in breast cancer patients treated with cardiotoxic chemotherapy. J.Cardiol.2007;122(3):195-201.

[15]Francesca De Iuliis,Gerardo Salerno,et al. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients.J.Tumor Biol.2016;37(3):3379-3387.

[16]White,MatthewC;Pang,Li et al. MicroRNA-mediated maturation of human pluripotent stem cell-derived cardiomyocytes:Towards a better model for cardiotoxicity? J. Food Chem Toxicol. 2016;98:17-24.

[17]Gustav Holmgren,Jane Synnergren,et al.Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyoctytes derived from pluripotent stem cells.J.Toxicoogy.2015;8(2):4-6.

[18]Gustav Holmgren,Jane Synnergren,et al. MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity.J.Toxicol In Vitro.2016;34:26-34.

[19]Umesh Chaudhari,Harshal Nemade,et al. MicroRNAs as early toxicity signatures of doxorubicin in human induced pluripotent stem cell derived cardiomyocytes.J.Arch Toxicol.2016;90(12):3087-8098.

[20]Kasey J. Leger,MD,MSc,et al. Circulating microRNAs:Potential Markers of Cardiotoxicity in Children and Young Adults Treated With Anthracycline Chemotherapy.J. Am Heart Assoc.2017;6(4):1-9.

[21]Bonnie Ky,MD,MSCE,et al. Early Increases in Multiple Biomarkers Predict Subsequent Cardiotoxicity in Patients With Breast Cancer Treated With Doxorubicin Taxanes,and Trastuzumab.J.Am Coll Cardiol.2014;63(8):809-816.

[22]Derya Arslan,Tugba Cihan et al. Growth-differentiation factor-15 and tissue doppler ?maging in detection of asymptomatic anthracycline cardiomyopathy in childhood cancer survivors.J.Clin Biol.2013;46:1239-1243.

[23]JM Horacek,L Jebavy et al. Glycogen phosphorylase BB could be a new biomarker for detection of cardiac toxicity during hematopoietic cell transplantation for hematological malignancies.J.Bone Marrow Transplant.2010;45(6):1123-1124.

[24]Ren-chun Lai,Xu-dong Wang et al. Heart fatty acid-binding protein may not be an early biomarker for anthracycline-induced cardiotoxicity inrabbits.biomarker for J. Med Oncol.2012;29(3):2303-2308.

[25]Patrick G. Morris,Carol Chen et al. Troponin I and C-Reactive Protein are Commonly Detected in Patients with Breast Cancer Treated with Dose-Dense Chemotherapy Incorporating Trastuzumab and Lapatinib.J.Clin Cancer Res.2011;17(10):3490-3499.

论文作者:滕彦玲1,孟照辉2

论文发表刊物:《健康世界》2018年2期

论文发表时间:2018/4/9

标签:;  ;  ;  ;  ;  ;  ;  ;  

生物标记物诊断蒽环类化疗药物致心脏毒性的研究进展论文_滕彦玲1,孟照辉2
下载Doc文档

猜你喜欢