电力系统的接地故障线路识别与综合处理论文_李志刚 李建平 任冠男,

电力系统的接地故障线路识别与综合处理论文_李志刚 李建平 任冠男,

摘要:在市场经济全面发展的今天,我国的发电厂建设规模越来越高。在发电厂当中,如果电力系统发生接地故障,会严重影响电力系统的运行水平,增加发电厂运营管理成本。为了保证发电厂电力系统接地故障得到更好处理,本文深入研究了电力系统接地故障判断要点与处理方案。

关键词:电力系统;接地故障;线路识别;综合处理

1系统问题分析

1.1中性点不直接接地系统的故障线路识别问题

中压电网采用中性点不直接接地运行方式,当发生单相接地故障时(以下简称接地故障)故障相电压为零,非故障相电压上升为线电压,但是三相线电压依然对称,可以保证对设备的连续供电,且故障相接地电流不大,系统可以带故障运行1~2h,大大提高了系统的供电可靠性。与接地故障后立即跳闸的大电流接地系统相比,这种接地方式在供电的连续性和稳定性方面优势明显,特别适合于生产型企业,对供电的连续性和可靠性方面有很高的要求。但是如果系统发生接地后也会出现一系列问题:(1)瞎子摸路:逐条断开线路,造成不必要的停电。(2)故障升级:系统薄弱环节绝缘易被击穿升级为相间短路。(3)全系过压:弧光接地会引起全系统过电压,造成事故扩大。

1.2目前企业所使用的供电系统线路识别技术讨论

供电系统在正常供电运行时每个供电线路的电流大小稳定,电流方向不变,但是当系统发生接地故障时,故障线路的运行工况就会发生改变,与之前的工况在电流大小和电流方向方面会发生很大的变化。电流大小方面,正常运行的线路流过的零序电流仅仅是该线路的电容电流,而发生接地故障线路流过的零序电流是全系统的电容电流减去自身的电容电流,所以电流大小方面会有很大的不同。在电流方向方面,正常运行的线路电流是从母线流向馈线,而故障线路的零序电流是从故障线路流向母线,这样会使故障线路和非故障线路的电流方向刚好反相。通过这种不同电流的状态可以判断接地线路,所以目前市面上很多小电流接地选线装置就是利用这种原理设计的,但是也加入了其它的智能算法以做综合辅助的判断。基本的原理是:通过突变量启动、电压比幅、电流大小排序、电流比幅比相进行连续的线路识别。

但是通过这十多年的小电流原理的选线装置的运行结果看效果并不理想,而且真实的结果是选线的准确率很低,通过以往连续多年国网的统计看,准确率只有60~70%,从企业的运行角度看如果线路识别不能达到100%,而通过人工识别再操作的工作量是一样,不能作为可靠的线路识别判断依据,也并没有给值班人员减小工作量。那具体的不准确原因在什么地方呢?大致分析有以下几种主要原因:(1)是利用的小电流信号太小,当系统接地时产生的零序电流是系统电容电流,而且电流的大小与馈线的负载大小和线路的长度有直接的关系,如果负载大且线路长电容电流就大,负载小线路短电容电流就小,所以会出现同一个变电站内不同的馈线电容电流都不相同,再去判断接地时的电流变化值就更难了。(2)系统内其它的电磁干扰大,在变电站和发电厂的小电流选线的装设地点,电磁干扰大;二是由于负荷电流不平衡造成的零序电流和谐波电流较大。(3)接地时的电容电流波形的不稳定。系统单相接地故障,大部分间歇性的弧光接地,而不是稳定的弧光接地,所以电容电流波形不稳定,在比对电流的幅值时就很难比对。

2针对性的解决办法

2.1接地故障的线路识别解决办法

我们转换一下思路,通过上文分析传统的利用小电流选线的方式,选不准故障线路的主要原因是短路电流太小,而导致短路电流太小的根本原因就是因为中性点不直接接地系统。如果我们通过人为的干涉,能够在系统出现接地故障时,人为的把中性点不直接接地系统转换为直接接地系统,在接地的瞬间制造出一个比较大的短路电流用来线路识别,这个问题不就迎刃而解了。

期刊文章分类查询,尽在期刊图书馆通过控制中性点的接地时间和接地电流,从而得到一个易于识别的故障支路但又不引起系统不良反应的大电流,此种方法可以准确的识别故障线路。

基于上述可控电流的思想,可以在变电站的主母线上安装一台小容量接地变压器,并在接地变压器的中性点装设接地可控接地电阻,当系统发生接地后,接于接地变压器中性点的可控接地电阻,在其两端电压过零附近使中性点与地之间瞬间导通,以产生一通路短路电流。该短路电流绝大部分会经接地的故障点入地,再通过微机控制器对各条馈线的增大的短路电流加以检测,检测到有大电流通过的馈线即为接地线路。

具体的配置设备说明:信号采集单元安装在每个馈线柜的二次室,用来采集零序电流互感器的电流信号并转换为光信号,它和主控制器保持实时通讯。零序电流互感器安装于每个馈线柜的电缆室,当发生单相接地故障时,接地变压器中性点位置的可控接地电阻导通,系统通过中性点与其中一条馈线的接地点形成零序电流通道。此时零序CT的大电流信号传输到信号采集单元,并转换为数字信号后发送到主控制器。信号采集单元有固定的编码,从而由主控制器直接识别故障线路。这种触发式的大电流选线的方法有很多的优势,其中两个主要优势:

(1)选线装置柜内的接地可控硅的电阻值是可以调节的,通过调节可控硅的电阻值,使系统发生单相接地时,导通可控硅后流过的瞬时短路大电流在不同的接地电阻的情况下都能保持足够大的强度以便被检测到,同时又可以保证不能电流大道影响到供电系统的正常运行,所以选线装置柜内的可控硅的调节是要经过反复验证和修改的。(2)选线柜内的可控硅是我们人为加上去的,而且可控硅的电阻大小及导通角不同就可以是可控硅导通时瞬间的短路电流波形的特性有别与系统的其它电流,不容易受到其它系统的电流干扰,也是增加线路识别准确率的一个重要的因素。

2.2接地故障处理问题的解决办法

2.2.1消弧线圈单独使用时的缺陷

当系统发生接地故障时,常见的故障处理方法有消弧线圈补偿法和触点消弧法,这两种故障处理方法都是单独应用于系统中,不能根据系统发生接地故障的性质来针对性的采取不同的处理方式,系统应用都有很大的缺陷。当系统发生瞬时性的接地故障时,由于消弧线圈前期的暂态过程比较长,不能够实现快速消弧补偿,而容易造成故障扩大;另外,消弧线圈不能补偿高频接地电容电流,而补偿的效果较差;对于永久性的接地故障,消弧线圈也不能实现全补偿,故障点有残流,对于电缆支路,对于电缆固体绝缘材料一旦被击穿即无法恢复,导致电缆“放炮”,或发展成相间短路。

2.2.2触点消弧单独使用时的缺陷

触点消弧法是当发生接地故障时,直接利用真空接触器把故障相变为金属性接地,从而达到稳压消弧的作用。但是当真空接触器打开的瞬间,容易引起操作过电压,也使故障点的再次击穿而导致故障扩大。另外:触点直接接地后,立刻将弧光接地转换为金属性接地,非故障相的过电压稳定在√3倍,使故障的性质是临时性接地,还是永久性接地无法判定。

结束语

供电系统在运行中各种故障都有可能发生,但是单相接地故障是其中危害比较严重的故障类型,而且发生频率高,如果不能及时处理最终会发展为短路事故,造成非计划停电。文章对接地故障进行分析,并对如何进行线路识别和综合处理进行综述。

参考文献

[1]杨进.电力变压器铁心接地故障的诊断与处理策略研究[J].电子测试,2018(13):112+111.

[2]张新一.电力系统间歇性接地故障识别方法的探究[J].山东商业职业技术学院学报,2018,18(02):93-96.

[3]刘小强.火力发电厂电力系统接地故障的判断与处理分析[J].南方农机,2018,49(04):200.

论文作者:李志刚 李建平 任冠男,

论文发表刊物:《中国电业》2020年第1期

论文发表时间:2020/4/26

标签:;  ;  ;  ;  ;  ;  ;  ;  

电力系统的接地故障线路识别与综合处理论文_李志刚 李建平 任冠男,
下载Doc文档

猜你喜欢