关键词:风力发电系统;控制技术;应用研究
引言
19世纪70年代以后,人类开始进入二次工业革命,人类社会也开始进入电气时代,电力得到了广泛应用,并取代了蒸汽成为工业生产和社会生活的主要能源,给人类社会的生产结构和生活方式带来了巨大的改变。随着发电技术的发展,风力发电技术在我国得到了普遍应用,而风力发电过程中风力发电系统控制技术是促进风力发电技术进一步发展的重要基础和影响因素,但是,随着我国社会经济发展和人类生活对电力需求的增大,我国原有的风力发电系统控制技术已无法满足现代风力发电技术的高要求,阻碍了风力发电技术的进一步发展。人们对如何提高风能、水能等新能源的利用率展开了研究。风力发电已经成为电能产业不可缺少的能源,风力发电的并网技术的研究对提高风能发电效率具有十分重要的作用。并网技术在风能发电中的应用可以提高电能的稳定性以及用电的效率。
1风力发电原理
风力发电的原理是把风能转化为机械能,再将机械能转化为电能进行输出。具体过程是通过风带动风机叶片转动,从而使发电机内部线圈旋转切割磁场,最终产生感应电流,并被储能装置以电能的形式储存起来。通常风力发电机由风轮叶片、低速轴、高速轴、风速仪、塔架、发电机、液压系统、电子控制系统等部件组成。其中,风轮是将风能转化为机械能的装置,根据风向的变化调节风轮方向,可以最大限度地利用风能。塔架是连接支撑风轮和发电机的支架,其高度是由周围地势和风轮大小决定的,以确保风轮的正常运行。发电机是将风轮产生的机械能转化为电能的装置。在风机构造中,定义风轮叶片尖端线速度与风速之比为叶尖速比,是风机的重要参量,其大小是影响风机功率系数的重要参数。通过设计风轮的不同翼型和叶片数,可以改变叶尖速比。风机组的功率调节是风力发电系统的关键技术手段,其主要方式包括定桨距失速调节、变桨距失速调节和主动失速调节三种。定桨距失速调节将风机叶片和轮毂固定,叶片顶角不能随风速进行调整,其结构相对简单,可靠性强,风机输出功率随风速而变化,因此在低风速下其利用率较低。变桨距调节是通过改变桨距角调整风能的转化效率,尽可能的提高风能转化效率,使风机输出功率保持平稳。主动失速调节是通过叶片主动失速来调节输出功率。当风速低于额定风速时,通过控制系统进行调控;当风速超过额定风速时,变桨系统通过增加叶片攻角使叶片失速,从而限制风轮的吸收功率。
2优化措施分析
2.1做好谐波抑制措施
第一种是做好谐波抑制工作,影响风力发电并网技术质量的因素有很多,其中,电能的质量情况在其中占有非常重要的地位。为了最大程度的提高电能的利用效率,相关的技术人员主要采取的方式是通过对结合组静止无功补偿器进行使用,来对影响谐波的因素进行抑制。由于我国电力行业的发展在最近几年来受到了人们的广泛关注,电能设备的发展方向朝向多元化、丰富化的方向发展,现阶段,市场上抑制器的种类也越来越丰富。
期刊文章分类查询,尽在期刊图书馆谐波抑制工作使用的抑制器是组合型的,由可投切电容器、电抗器以及谐波滤波装置构成,这种抑制器与其中类型的抑制器相比,功率的转化速度加快,可以对风力情况进行追踪检查,可以在短时间发现不稳定的情况,并且对这种情况进行及时的解决,提高抑制谐波的效率以及风力发电的质量情况。
2.2风力发电和电力电子变换器的控制技术
①电力电子变换器的控制技术。从整个风力发电系统中可以发现,存在着电力电子变换器,并且电力电子变换器的特征表现在多方面:使用面较为广泛,可以有效地用于大型风力发电系统中;风能转换过程中能量的转换率较高,完成转换后具备很高的传输效率;还可以完善无功功率因素;其使用的安全性和可靠性很高。电力电子变换器的运行功率高且功率范围也很大;该设备无需花费很多成本。通过运用pwm整流器于风电系统中,能够最好地控制系统的最大功率。而运用整流器的时候,通过矢量的控制方法可以解除有功功率和无功功率之间的障碍,保证无功功率符合运行的相关要求。另外,pwm整流器还可以使有功功率的输出量最大化,设置好直流环节并调整风电系统中无功和有功功率。②风力发电的控制技术。风力发电需要借助风力进行,这是因为风力与地面距离相差加大,这样一来,能量转化工作在空中就能完成。发电机和相关设备都需要努力提升工作效率,并且减轻物体的体重。永磁发电机的优势在于运行效率高且损耗较小,所以被普遍运用于风力发电系统中。发电机制造还可以通过模块化方式开展,这样能减少所需花费的成本,对风力发电系统的发电机进行管控的过程中,一般都会采用矢量的控制方法,这类方法有效地解除了交轴电流与直轴电流之间的矛盾,也就使系统功率的因数控制简单化。
2.3现代化的控制技术
风力发电中现代化的控制技术可以分为以下几种类型:鲁棒控制技术、变结构控制技术、智能控制技术以及自适应控制技术,风力发电系统中,以变结构控制技术为主,该技术运用广泛是因为具有很快的反应力、设计较为简单、实现难度不大;处理一些多变量问题时,鲁棒控制技术可以发挥出很好的作用,具有较强稳定性的鲁棒控制技术还能有效地处理好参数不准、建模出现误差或者物质系统受影响的问题;而智能控制技术最突出的方法是模糊控制,它无须过度依赖数学模型,只需凭借专家经验就能克服一些非线性因素带来的影响。目前,一台准确的风力发电机数学模型的建成概率较小,所以对风力发电机组进行控制的过程中,可以多使用模糊控制方法。
结语
综上所述,随着国家社会经济的不断发展,我国的储存能源也在不断减少,环境也遭受到了一定程度的破坏,能源和环境问题日益突出,也越来越受到大家的关注,而风能作为我国的清洁能源之一,将其应用于发电技术中,遵循了我国绿色可持续发展理念,风力发电技术也成了我国最为常见的发电技术之一。目前,我国的风力发电主要有陆地风力发电和海上风力发电2类,给我国经济社会发展和人类生活提供了所需的电力。但是,由于我国的风力发电系统控制技术还存在着较大缺陷,导致我国风力发电效率较低,极大地影响了我国风力发电技术的进一步发展。所以,为了提高我国的风力发电技术,必须要加强对风力发电系统控制技术的研究。
参考文献:
[1]周利鹏.风力发电并网技术及电能质量控制措施探讨[J].科技创新导报,2018,15(36):70-71.
[2]梁佳斌.风力发电并网技术及电能质量控制对策分析[J].电工技术,2018(12):69-70.
[3]林静,蒋雷.风力发电并网技术及电能质量控制策略[J].通讯世界,2018(05):241-242.
[4]吕昶.风力发电并网技术及电能质量控制措施探讨[J].科技视界,2017(28):131+139.
论文作者:李来客
论文发表刊物:《中国电业》2019年11期
论文发表时间:2019/12/2
标签:风力发电论文; 技术论文; 风轮论文; 风能论文; 电能论文; 变换器论文; 功率论文; 《中国电业》2019年11期论文;