浅析电力通信中的光纤通信技术应用论文_刘继华,邹峰萍

浅析电力通信中的光纤通信技术应用论文_刘继华,邹峰萍

(国网河南省电力公司信阳供电公司 河南信阳 464000)

摘要:当下通用的电力通信技术在各别技术环节比较落后,导致运行效率低下,抗干扰能力不突出。所以,在电力系统工程中引入先进的通信技术势在必行。光纤通信在这样的背景下应运而生。相比电力通信技术,光纤宽带在运行过程中的损耗少、传输容量大,具有非常好的抗干扰能力。基于这些优点,光纤通信技术在电力系统工程中的地位越来越重要,使得电力系统的运行环境更加安全和稳定。

关键词:光纤通信;电力通信;应用

1电力通信中光纤通信技术的应用优势

1.1 传输速度快

在电力通信系统中,其具有较为复杂的网络结构,系统中包含多种设备,且设备和设备之间的信息转换方式存在不同,这会让电力通信效果受到影响。 光纤通信技术具有传输速度快、带宽大的特点,在信息时代背景下,电力通信具有较大的压力,为贴合时代发展趋势、满足生活用电需求,需要提高电力信息传输量, 并对电网数字化发展中的信息传输速度予以重视,应用光纤通信技术具有重要意义。

1.2 信息损耗低

在电力通信系统的运行中, 对其传输信息的时效性要求和精准性要求相对较高,其传输信息包含话音信号、继电保护信号、电力负荷监测信息等,光纤通信技术具有信息损耗低的特点,我国幅员辽阔,为让电力通信网络覆盖全部区域,就需要克服多种地域位置造成的覆盖困难,如在部分偏远地区,如果采用铜线或是电缆来构建电力通信网络, 就有可能让长距离传输目的难以得到满足,而在短距离传输过程中,可能会出现信号终端现象,会让建设中继站成本增加。

1.3 技术种类多

人们对于电力系统的依赖随着社会经济的不断发展而逐渐提升,与此同时,对于电力通信的要求也在逐渐提升,电网公司在构建电力通信系统时,既要考虑到其性能要求,同时也需要考虑到投入成本。 光纤通信技术具有多种类型,可以满足电力通信的多种需求。 现阶段,ADSS 和 OPGW 是最为常见的两种光纤类型,二者虽然需要较高的投入成本,但是其安全性相对较高,可使用时间相对较长,具有良好的长期经济效益,可以适应电力公司的使用需求。

2传统电力通信系统主要问题

2.1电力通信系统传输量小

在传统电力通信系统中,其信息传输量相对较少,这会对电力通信系统的运行效果受到影响。在实际运行中,需要传输数据信息、话音信号、继电保护信号、电力负荷检测信号,其传输形式包含了声音、数字、图像等,传统电力通信系统很难保证传输时效性。

2.2电力通信系统可靠性差

传统电力通信系统在运行过程中,可能会出现突变、间断等现象,这会影响多种电气设备与生产设备的正常运行,甚至会引发安全事故,为生命财产安全构成威胁。而随着自动化技术的提升,为方便统一管理,电力系统中各个设备的联系逐渐增强,如果某一环节出现问题,就有可能让整个电力通信系统瘫痪,因为其抗冲击能力差、可靠性差的问题,已经很难满足当前社会的需求。

2.3电力通信系统网络结构复杂

在传统电力通信系统中,其网络结构较为复杂。在网络中,包含多种通信设备,而设备的不同导致其信息转换方式、连接方式存在差异,如用户线延伸、中继线传输、微波设备转接就存在不同通信方式,这使得其具有复杂的网络结构,也就让后期的维护管理、检修工作难度增加。

期刊文章分类查询,尽在期刊图书馆

3光纤通信技术在电力通信中的应用

3.1光纤复合相线的应用

光纤复合相线是一种融合了传统相线结构和光纤通信技术的新型技术,在具体应用过程中,主要是在过去的电力通信系统线路资源上,使用光纤技术对通信系统线路、频率以及电磁兼容性进行有效协调,进而让传统电力通信系统信息传输性能得到增强。作为一种较为新型的通信光缆,起初在150kV电力系统中得到了应用,后随着光线符合相线使用技术的进一步成熟,现阶段,在其他高压电力系统中也渐渐得到了广泛使用。在三相电力系统中,将其中一项替代为光线复合相线,可以让全新三相电力系统得以形成,进而让信息可传输数量得到增长,让信息传输质量得到提升,和另设通信线路相比,这种方法的投入成本相对较低。在具体施工中,需要利用光电子分离技术、光纤接续技术,以此来单独分离出相线光纤单元,在施工过程中,需要对接线盒予以独立设置。如在我国某地的新建35kV电网通信中,就采用了光纤复合相线技术,其光缆为16芯,在具体施工中,将OPPC光缆替代3根导线中的1根,对杆塔进行加固、加高及改造,解决了过去存在的110kV变电站与35kV变电站之间调度、通信及自动化问题。该工程之所以取得成功,主要是因为做好了五项基础工作:(1)需要依照系统对导线型号进行确定,依照参数接近原则对光缆型号进行选择,为让OPPC光缆和相邻导线弧垂张力特性维持一致,保证了其截面、直径、重量等相关参数与相邻导线接近,直流电阻和相邻导线接近;(2)需要利用OPPC专门的绝缘金具、预绞式电力金具与专用接头盒;(3)需要保证OPPC光缆悬垂线夹、耐张线夹以及终端接头盒等相关附件的绝缘性;(4)在施工过程中,需要将OPPC光缆留有一定余长,确保光纤不会出现挤压情况;(5)在光电绝缘连接中,需要使用专门的接头盒,需要使用专业技术,将全金属跳线接头盒安装在两个耐张绝缘子串间,相线导电面积需要小于有效金属导电面积。

3.2光纤复合地线的应用

光纤复合地线,也被称为光纤架空地线、地线复合光缆,利用光纤复合地线技术,可以对输电导线进行有效保护,可以让电力系统抗冲击能力得到提升,让输电线路防雷性能得到增强。同时,利用光纤复合地线技术,可以结合光缆与架空地线,进而让多种信息实现高效传输。在电力传输线路中,光纤复合地线技术的使用需要设立光纤单元,可以让其安全性、可靠性得到提升,让后期维护工作更为简单。但是,光纤复合地线技术的使用需要较多的工程投入成本,这也让此技术应用受到一定限制,通常情况下,使用此种光纤通信技术多在旧线路地线更换工程及新建线路工程中。在此类工程中使用光纤复合地线技术能够让架空地线电气性能与机械性能得到保证,这也是此种技术在电力系统改造升级架空地线中得到广泛应用的主要原因。

3.3全介质自承光缆的应用

在110kV电压输电线路、220kV电压输电线路、35kV电压输电线路中,全介质自承光缆技术得到了广泛的使用,这种技术主要是改进、升级原有线路,利用高压输电线杆,可以完成通信网络的搭建工作。组成全介质自承光缆的主要材料为非金属材料,光缆外套多采用耐电痕材料或聚乙烯材料。因此,这种全介质自承光缆技术具有较好的抗干扰性能、较高的环境适应性能和传输性能,在施工过程中,可以一起铺设全介质自承光缆和其他高压电力传输线路,外界电磁信号不会对其造成严重干扰,进而让电力通信系统建设便捷性与运行安全性得到保证。值得注意的是,在建设过程中,需要结合工程的实际情况对全介质自承光缆保护套进行合理选择,依照工作环境变化,考虑雨雪、温度以及风速等相关因素,可以完成施工计划的制定工作,进而让电力通信系统安全性得到保证。

结束语

综上所述,光纤通信技术具有抗干扰能力强、通信容量大、中继距离长和安全性能高的特点,可以对传电力通信中的主要问题予以有效解决,在实际应用中,光纤复合相线、光纤复合地线以及全介质自承光缆等技术的应用均可取得明显的改造效果,光纤通信技术是当前和未来的主要发展趋势,需要对其进行进一步研究,以推动我国电力通信技术的进一步发展。

参考文献:

[1]吴驰浩.电力通信背景下的光纤通信技术应用研究[J].中国高新技术企业,2017(12):78-79.

[2]董彬彬.光纤通信技术在电力通信中的应用[J].中小企业管理与科技(中旬刊),2015(07):188.

[3]田琳琳.光纤通信技术在电力通信中的应用[J].科技与企业,2015(09):67.

论文作者:刘继华,邹峰萍

论文发表刊物:《电力设备》2018年第16期

论文发表时间:2018/10/1

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅析电力通信中的光纤通信技术应用论文_刘继华,邹峰萍
下载Doc文档

猜你喜欢