一、煤矿机械的发展是高产高效矿井建设的可靠保证(论文文献综述)
刘一扬[1](2021)在《厚煤层综放开采顶煤放出规律及工艺参数优化研究》文中进行了进一步梳理综放开采具有回采成本低、地质条件变化适应性强,高产高效等优势,已成为我国厚煤层开采的主要方法之一。国内外学者围绕此项开采技术开展了大量理论与试验研究,并取得丰硕研究成果,但在顶煤放出率与工序设备的配合方面仍需进一步探究。首先,存在采出率相对较低的问题,因此,需要明确破碎后顶煤在支架上方的流动及放出规律,基于此规律指导放煤工艺的选取、放煤终止原则的确定,以尽可能的提高工作面回收率、降低含矸率;其次,综放开采工艺复杂,需针对工序与设备的时空配合关系开展研究,以使各工序间配合更加紧密,充分发挥设备生产能力。本文以王家岭煤矿12309工作面为工程背景,运用极限平衡理论研究了顶煤体采动应力场演化规律,揭示了应力场中顶煤的受力状态及破碎机理,并进行了顶煤破碎块度现场实测。以所测顶煤块度为依据,采用离散元颗粒流程序(PFC),建立散体放煤数值模型,探究了煤矸分界线动态演化规律及放出体形态特征。基于上述研究,设计了不同工艺参数组合的数值模拟试验,围绕多个放煤周期内的顶煤损失规律展开研究,明晰了不同放煤工艺参数对顶煤放出效果的影响,确定了适合于12309工作面的合理放煤工艺参数及放煤终止原则。根据所得合理放煤参数,运用理论分析的方法,研究了综放开采工序与设备的时空配合关系。(1)推导得出综放采场塑性区及弹性区支承压力分布表达式,得到了支承压力峰值距煤壁的距离为14.8 m,影响范围为44.3 m,并绘制了分布曲线。结合莫尔应力圆分析了顶煤破碎机理,通过顶煤破碎块度现场实测,得到了粒径在4.0~9.2 cm、9.2~14.4 cm、14.4~19.6 cm、19.6~24.8 cm、24.8~30 cm的顶煤块体所占平均质量百分比分别为18.96%、32.64%、23.47%、12.53%、12.40%。通过对不同块度的放出块体数量统计,得到了随着块度的增大,放出块体数量逐渐减少的规律。(2)研究了初始放煤及周期放煤过程中煤矸分界线的动态演化规律。设置标记点分析了等时间间隔内,不同位置的煤矸运移轨迹及速度,并运用抛物线描述了煤矸分界线形态。通过反演放出体发现,对于初始放出体与放煤时间较长时的周期放出体,整体形态为一个下部被支架掩护梁截割的椭球缺。而放煤时间较短时的周期放出体则类似于散体的突然垮塌。(3)设计不同放煤高度及放煤步距相互组合的9组数值模拟试验,统计得出多个步距内的顶煤流动差异及损失规律,并依据损失规律将煤损归纳为三种形式,分别阐述了三种煤损形式产生的机制。研究了放煤厚度及放煤步距对每一步距放煤量、放出煤矸颗粒集合体、采空区遗煤形态及不同损失位置的遗煤量等放煤效果的影响规律。在考虑割煤回收率的前提下,确定了适合12309工作面的合理放煤工艺参数为3 m放煤厚度、0.8 m放煤步距,煤层回收率为87.51%。(4)考虑相邻步距放煤之间存在的联系,反演过量放煤放出体并将其分为4个分区,围绕各分区占比及可放遗煤损失位置开展研究,研究发现过量放煤放出的顶煤颗粒中,仅约1/3的颗粒为过量放煤可放遗煤,并基于低含矸率、高回收率,提出适合于12309工作面生产实际的放煤终止原则为“见矸关窗”。(5)阐释了综放开采各工序的协调关系以及设备的配合关系。根据所得12309工作面合理放煤参数,分别研究了采煤机割煤速度、放煤速度以及割煤-移架系统的可靠度,确定了前、后刮板输送机的运载协调关系。
董书宁,刘再斌,程建远,陈宝辉,代振华,李丹[2](2021)在《煤炭智能开采地质保障技术及展望》文中研究指明煤炭智能开采是我国煤炭工业在新一轮技术变革下的战略选择,是实现煤矿安全高效生产的必由之路,地质保障技术可为煤炭智能开采提供准确可靠的地质数据支撑,且能有效探查隐蔽致灾地质因素以减少煤矿生产灾害事故的发生。我国煤炭地质保障技术从服务于资源勘查、高产高效矿井建设到服务于煤矿安全高效生产,从基础地质勘查工作、GIS系统到隐蔽致灾因素探查,不同时期的煤炭地质保障技术具有鲜明的特点。分析了在煤炭智能开采背景下地质保障技术面临的3个难题:地质条件探测精度不足、动态地质信息监测困难与智能开采缺乏统一的地质基础。在前期研究的基础上,论述了面向煤炭智能开采的地质保障技术体系,主要包含高精度综合探测、一体化智能在线监测、工作面地质透明化三大关键技术,通过煤炭开采过程中地质信息综合精准感知、动态融合、同步映射和孪生反馈,实现地质保障的数字化、三维可视化和智能化。面对新一轮能源科技革命和产业变革,针对新形势下煤矿安全发展新要求,提出了煤炭智能开采地质保障云平台、技术标准体系构建的发展方向,平台化、标准化的技术体系可为煤炭安全高效智能绿色开采提供可靠的地质保障。
宋选民,朱德福,王仲伦,霍昱名,刘一扬,刘国方,曹健洁,李昊城[3](2021)在《我国煤矿综放开采40年:理论与技术装备研究进展》文中指出综采放顶煤开采技术作为我国开采厚及特厚煤层的主要方法之一,其引入我国近40年来,放顶煤开采理论与技术实践在我国均取得了长足发展与进步。系统回顾与总结了我国在放顶煤技术领域所取得的标志性成就,结合综放工作面技术特征、理论演化逻辑与资源开采新理念,将其发展历程分为初期试验、发展成熟以及智能化无人开采3个阶段。主要针对综放采场支架与围岩关系以及顶板(煤)结构与稳定性、顶煤破碎运移放出规律、以及综放"三机"装备的进展4个方面核心内容,对我国综放技术的发展进行了总结;围绕综放采场支架与围岩关系以及顶板(煤)结构与稳定性问题,依据机采高度的变化描绘了我国学者关于该问题研究的基本历程;从顶煤破碎机理、综放采场顶煤冒放性分类评价以及顶煤放出规律理论3个方面,阐述了我国关于顶煤破碎运移放出规律的发展道路;放顶煤开采工艺研究方面,则从常规的综放工艺、特殊地质条件下综放工艺以及综放工序的时空配合关系展开,再现了我国学者的研究路线;同时简要阐述了综放"三机"装备的发展进程与最新成果。明晰了我国放顶煤技术的发展脉络与研究思路,分析并探讨了现阶段放顶煤开采理论与技术发展前沿的相关难题,为我国综采放顶煤技术的进一步发展提供了研究基础与思维启迪。
赵波[4](2021)在《大厂煤矿机械化改造中的井田开拓方式优化设计研究》文中进行了进一步梳理我国土地辽阔,资源类型丰富且多样,其中具有庞大的煤炭资源储量,居世界第三位,煤炭是目前我们不可取代的重要能源之一。煤炭开采时,根据不同煤层不同的地质条件和地形地貌会采取不同的方式进行开采。在保证采矿安全前提下,优化整个矿井、采区和巷道的布置,最大的提高矿井产量,选取优化适合的井田开拓方式对煤炭的开采来说具有十分重要的意义。本文以大厂煤矿机械化改造中的井田开拓方式为主要研究对象,以煤矿的实际情况为出发点,综合比较研究煤矿的地质构造情况、煤层赋存情况、开采技术条件等方面。通过查阅和参考国内外大量煤矿的井田开拓基础理论和实践技术等方面的学术论文及相关着作后,通过实地踏勘、基础理论分析和基础数据采集等多种方式,提出了两种开拓方式,探讨了两种开拓方式的优劣,提出适合本矿井的开拓方式。在通风与安全方面,本文根据机械化改造后的开拓方式,重新计算了矿井的总需风量,同时按照矿井实际提出预防瓦斯爆炸、粉尘、井下火灾、水灾、顶板垮塌等事故的对策措施。在“六大系统”方面,按照国家的相关政策法规,结合大厂煤矿的实际情况,提出了优化改造的方案。
郭俊生[5](2021)在《我国井工煤矿开采技术装备回顾及展望》文中研究指明我国井工煤矿开采技术及配套装备发展30年来,不论是开采、掘进技术及配套装备,还是安全高效现代化矿井建设技术水平,都实现了由弱到强的跨越式提升。对我国30年来厚煤层开采技术发展、薄及中厚煤层开采技术装备发展、安全高效矿井配套技术装备发展等方面进行了回顾和总结,展望了我国井工煤矿开采发展前景,认为,安全、高效、绿色、智能将成为未来我国井工煤矿开采技术的主要发展方向,主要表现在复杂煤层安全高效开采、井工煤矿智能无人开采、煤炭资源绿色一体开采等方面。
程建远,王会林[6](2020)在《煤矿地质保障技术现状与智能探测前景展望》文中研究表明煤矿智能化开采对煤矿地质保障技术提出了前所未有的挑战和机遇。传统的煤矿地质保障技术以煤炭资源勘查与评价、煤矿采区地质条件探测和矿井生产地质超前预测为目标任务,采用高精度三维地震、孔-巷瞬变电磁、反射槽波技术、定向钻探技术与装备等探测手段,为煤炭工业提供了大量的后备资源和可靠的技术支撑,但尚不能满足煤矿智能化、无人化开采的地质需求。煤矿智能化开采对高精度智能探测技术的需求,"倒逼"煤矿地质保障技术必须朝着从静态探测到动态探测、从主动探测到被动探测、从探掘异步到掘探同步、从人工探测到无人探测等方向转变;研发高精度智能动态探测技术与装备,开展探采地质信息的相互反馈,构建基于4D-GIS的地质透明化模型,实现三维地质模型与智能开采数据的深度融合,将成为煤矿智能化开采地质保障技术的发展趋势。
彭苏萍[7](2020)在《我国煤矿安全高效开采地质保障系统研究现状及展望》文中进行了进一步梳理从近40年来我国煤炭工业的发展进程,分析和总结了我国煤矿安全高效开采地质保障系统建设随着煤炭工业从炮采和普采向机械化开采的转变,经历了从煤田地质学发展到采矿工程地质学和矿井工程物探的发展过程,并逐步构建了煤矿安全高效矿井地质保障系统的基本框架。20世纪90年代中后期,随着煤矿采区高分辨三维地震勘探技术体系研究成果的建立和完善,使煤矿精细地质构造、煤与瓦斯突出、矿井突水通道等灾害隐患的探测精度和预测准确度大大提高,促进了我国煤矿安全高效矿井的迅速发展,煤矿安全高效矿井地质保障系统也走向成熟并在全国煤炭系统推广应用。虽然煤矿地质保障系统在保障开采安全、提高开采效率等方面取得了显着的成效,但随着信息技术的深度融合和煤矿机械化水平的进一步提高,煤炭绿色开采、智能精准开采等对煤矿安全高效开采地质保障系统提出了更高的要求,矿井地质透明化是当前煤矿安全高效矿井地质保障系统发展的努力方向。其重点任务是:①在统一的数据融合基础上,进一步提高地球物理勘探精度,提高矿井地质的透明化水平,构建煤矿智能开采地质保障平台;②研发与惯导技术一体的高分辨煤岩辨识仪器装备,实现对工作面前方5 m范围煤岩结构的自动化数据采集与精准识别;③以岩层结构为基础,以岩石力学和流体因子为重点,开发和建立智能矿山建设决策与灾害隐患预警系统。
伍好好[8](2020)在《叙永煤矿极薄煤层滑锯式机械化开采方法研究》文中提出近年来,随着我国煤炭消费水平的提升,煤炭开采技术的进步、国内外采矿设备制造水平的提高,我国的薄与极薄煤层的开采越来越得到国家及煤炭企业重视。但由于极薄煤层机械化开采技术发展速度比较缓慢,致使极薄煤层在国内各矿区均存在大量丢弃开采的问题,为提高煤炭资源回收率并满足瓦斯、火灾治理的要求,急需对极薄煤层实现规模化开采。因此,研究“一种极薄煤层滑锯式机械化开采方法”的关键技术,对各矿区的安全稳定发展和提高极薄煤层开采效益十分必要。本文以四川叙永煤矿的薄煤层工作面为研究对象,提出了“一种薄煤层滑锯机械化的开采方法”,通过理论分析和数值计算得到了如下主要成果:(1)设计了一种极薄煤层滑锯机械化的开采方法。通过分析薄煤层赋存特点,以及结合现用开槽机的三机配套结构及落煤特点,确定了采高可调、可爬底的滑锯采煤机、高强度窄机身化矮帮的移推支座(支架)、协同迈步自移刮板输送机的“三机”配套的相关技术参数,采用整体移溜和迈步式整体移架防倒防滑技术,实现了工作面无人或少人采煤作业。(2)设计优化“110”工法布置工作面和巷道,实现了工作面阶段上行式开采回风巷,各采掘面均按煤与瓦斯突出要求形成“Y”独立通风系统,形成了采、掘与瓦斯防突治理工程有效耦合的经济治灾模式。(3)极薄煤层开采走向上覆岩层塑性区变形呈拱状,垂直位移最大的位置在采场的中部;倾斜方向上覆岩层的塑性区在采场中部层位比较高,最大位移在工作面顶板中部偏上的位置;两端以剪切破坏为主,中部上覆岩层主要拉伸破坏;巷旁支护体载荷随煤层倾角增大而减小,随采高增加指数加大,随着支护体宽度,先快速减小,后减小速度趋于缓和;切顶、柔模护巷方式能有效防止采空区瓦斯涌入巷道,保证了矿井的通风系统的标准要求和留巷围岩的稳定性,进而提高了矿井安全保障度和煤炭回采率。(4)“一种极薄煤层滑锯式机械化开采方法”在叙永煤矿进行工程实践,部分方案在S12采区4个采煤面应用就创效达到2300万元,全部方案实施后的经济效益和社会效益会更好。本文提出的“一种极薄煤层滑锯式机械化开采方法”适用于所有近水平及倾斜极薄煤层机械化开采或部分薄层金属矿的连续机械化开采,特别能满足瓦斯与火灾治理对极薄保护煤层开采技术需求。
刘宝军[9](2020)在《矿井带式输送机能耗优化控制系统研究》文中进行了进一步梳理推动全社会开展节能降耗和资源综合利用,促进经济增长方式转变和可持续发展,已成为当今我国经济和社会发展中最为热点的话题。带式输送机作为煤矿生产的主要运输设备,由于煤矿地质条件的限制和煤矿生产的不均衡性,带式输送机在实际运行过程中未能达到稳定状态,当输送量减小时,带式输送机仍维持较高的运行速度,这样不仅造成煤矿生产电能的浪费,而且增加了设备的机械磨损。因此,研究矿井带式输送机能耗优化控制系统对减少煤矿生产成本,建设资源节约型和生态环境友好型煤炭企业具有一定的重要意义。本文以矿井带式输送机为研究对象,在总结分析带式输送机和节能技术国内外研究现状的基础上,对带式输送机能耗优化控制进行了研究。通过对带式输送机总体结构和基本原理分析,计算了带式输送机的运行阻力和功率,得出带速与煤流量是影响带式输送机功率消耗的主要因素,并且研究了其带速与煤流量匹配原理。根据煤矿现场实际生产情况建立了带式输送机煤流量、带速和功耗的BP神经网络能耗优化模型,运用改进粒子群算法对该模型参数优化,得到煤流量与带速之间的最优匹配关系,对皮带运行速度进行能耗优化控制。设计了基于PLC的模糊控制器,可以根据煤流量大小自动调节皮带运行速度,实现带式输送机的智能控制。对矿井带式输送机能耗优化控制系统的硬件和软件进行设计,通过WinCC上位机软件与PLC建立通讯连接,实现带式输送机远程控制和运行状态实时监控。选取某煤矿生产中的具体参数,分析了其带式输送机的节能效果。本文通过对矿井带式输送机能耗优化控制系统研究,实现了带式输送机的节能高效运行,并且减小了设备的机械磨损,延长了其使用寿命。在一定程度上保证了煤矿安全高效的生产,具有一定的工程应用和理论研究价值。
王国法,任怀伟,庞义辉,曹现刚,赵国瑞,陈洪月,杜毅博,毛善君,徐亚军,任世华,程建远,刘思平,范京道,吴群英,孟祥军,杨俊哲,余北建,宣宏斌,孙希奎,张殿振,王海波[10](2020)在《煤矿智能化(初级阶段)技术体系研究与工程进展》文中进行了进一步梳理煤炭是实现清洁高效利用的最经济、最可靠的能源,煤炭资源的智能、安全、高效开发与低碳清洁利用是实现我国煤炭工业高质量发展的核心技术支撑。基于我国煤矿智能化初级阶段的发展要求,开展了煤矿智能化技术体系研究和工程建设,进行了智能化煤矿顶层设计研究,以"矿山即平台"的理念将智能化煤矿整体架构分为设备层、基础设施层、服务层与应用层,实现煤矿生产、安全、生态、保障的智能化闭环管理。针对智能化煤矿存在的信息孤岛问题,开展了多源异构数据建模、特征提取与数据挖掘等技术研究,研发了基于数据驱动的信息实体建模与更新技术;研究了智能化煤矿高精度三维地质模型构建方法,通过在刮板输送机上布设巡检机器人与三维激光扫描仪,将三维激光扫描数据与地质模型数据、采煤机位姿数据、采煤机摇臂截割数据进行有效融合,获取采煤机的实时截割曲线,通过比对采煤机实际截割曲线与地质模型的煤岩层分界面曲线,实现基于地质模型动态更新的煤层厚度自适应截割控制方法;研发了工作面采掘接续智能设计技术,实现了接续工作面图纸、规程、规范的智能设计,大幅降低了采掘接续过程中的重复劳动;研究了掘锚一体机的位姿检测与导航技术、自动打锚杆技术、自动铺网技术、巷道三维建模与质量监测技术,探索了基于远程视频监控的巷道智能高效掘进技术与装备;以"有人巡视,无人操作"为特征的智能化开采工作面在全国逐渐推广应用,开展了基于三维地质模型动态更新的采煤机自适应截割技术研发与实践,在部分矿区取得较好的试验效果。分析了智能分选技术、智能辅助运输技术、5G通信技术在煤矿井上下应用存在的技术难点及解决的技术路径,从技术研发角度系统分析了制约智能化煤矿建设的关键技术难题。详细阐述了神东煤炭集团、兖矿集团、同煤集团、阳煤集团、淄矿集团、新汶矿业集团等国内大型煤炭生产企业现阶段在智能化煤矿建设中取得的阶段性成果,从技术研发与现场实践相结合的角度分析了智能化煤矿建设过程中存在的主要技术难题与发展方向。同时对煤矿智能化标准体系进行研究,提出了煤矿智能化标准体系框架,起草制定了"智能化煤矿分类、分级技术条件与评价指标体系"、"智能化综采工作面分类、分级评价技术条件与指标体系"等相关标准,为智能化煤矿建设提供标准支撑。
二、煤矿机械的发展是高产高效矿井建设的可靠保证(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、煤矿机械的发展是高产高效矿井建设的可靠保证(论文提纲范文)
(1)厚煤层综放开采顶煤放出规律及工艺参数优化研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 综放开采顶煤放出规律研究现状 |
1.2.2 综放开采工艺参数研究现状 |
1.2.3 设备与工序配合关系研究现状 |
1.3 研究内容及方法 |
1.3.1 主要研究内容 |
1.3.2 研究方法与技术路线 |
第2章 厚煤层赋存条件及顶煤破碎机理分析 |
2.1 王家岭煤矿厚煤层地质赋存条件 |
2.1.1 王家岭煤矿井田概况 |
2.1.2 王家岭煤矿12309 工作面概况 |
2.2 顶煤体采动应力场演化规律及顶煤破碎机理分析 |
2.2.1 采动应力场特征概述 |
2.2.2 塑性区应力分布 |
2.2.3 弹性区应力分布 |
2.2.4 顶煤破碎机理分析 |
2.3 顶煤破碎块度现场实测 |
2.3.1 现场实测 |
2.3.2 数据分析 |
2.4 本章小结 |
第3章 综放开采顶煤放出规律研究 |
3.1 数值模型的建立 |
3.2 煤矸分界线动态演化规律 |
3.2.1 初始放煤煤矸分界线演化规律 |
3.2.2 周期放煤煤矸分界线演化规律 |
3.3 综放开采放出体形态特征研究 |
3.3.1 初始放煤放出体形态特征 |
3.3.2 周期放煤放出体形态特征 |
3.3.3 初始放出体与周期放出体的差异 |
3.4 煤矸分界线与顶煤放出体关系 |
3.5 本章小结 |
第4章 顶煤损失规律及放煤工艺参数的确定 |
4.1 试验方案的设计 |
4.2 不同放煤参数的顶煤损失规律研究 |
4.2.1 不同的顶煤损失形式 |
4.2.2 放煤厚度对放煤效果的影响 |
4.2.3 放煤步距对放煤效果的影响 |
4.3 合理放煤参数的确定 |
4.4 合理参数下放煤终止原则的研究 |
4.4.1 过量放煤放出体分区 |
4.4.2 各分区占比研究 |
4.4.3 可放遗煤损失规律研究 |
4.4.4 放煤终止原则的分析及应用 |
4.5 本章小结 |
第5章 综放开采工序与设备时空配合关系研究 |
5.1 综放开采工序协调关系分析 |
5.1.1 工序协调关系 |
5.1.2 工序匹配优化原则 |
5.2 综放开采设备配合关系研究 |
5.2.1 设备配套的重要性 |
5.2.2 设备配合关系 |
5.2.3 12309工作面设备型号 |
5.3 采支放工序配合关系 |
5.3.1 采煤机割煤速度的确定 |
5.3.2 放煤速度的确定方法 |
5.3.3 移架速度的选择 |
5.3.4 移支速度关系分析 |
5.4 前后输送机运载协调关系 |
5.4.1 前部刮板输送机运输能力 |
5.4.2 后部刮板输送机运输能力 |
5.5 本章小结 |
第6章 结论与展望 |
6.1 主要结论 |
6.2 创新点 |
6.3 不足与展望 |
参考文献 |
攻读学位期间取得的科研成果 |
致谢 |
(2)煤炭智能开采地质保障技术及展望(论文提纲范文)
1 煤炭地质保障技术发展历程 |
2 煤炭智能开采地质保障技术难题 |
2.1 地质条件探测精度 |
2.2 动态地质信息监测 |
2.3 统一的地质基础 |
3 煤炭智能开采地质保障关键技术 |
3.1 高精度综合探测 |
3.2 一体化智能在线监测 |
3.3 工作面地质透明化 |
4 煤炭智能开采地质保障技术展望 |
4.1 智能开采地质保障云平台 |
4.2 智能开采地质保障技术标准体系构建 |
(3)我国煤矿综放开采40年:理论与技术装备研究进展(论文提纲范文)
0 引言 |
1 我国综放技术40年发展 |
1.1 初期试验阶段 |
1.2 发展成熟阶段 |
1.2.1 特厚煤层综放开采 |
1.2.3 软厚煤层综放开采 |
1.2.4 大倾角煤层综放开采 |
1.3 智能化开采发展阶段 |
1.3.1 大同矿区智能化综放工作面实践 |
1.3.2 王家岭煤矿智能化综放工作面实践 |
1.3.3 其他矿井智能化综放工作面实践 |
2 综放采场“支架-围岩”关系以及顶板结构与稳定性 |
2.1 综放采场支架围岩关系 |
2.1.1 普通机采高度(2.0~3.5 m) |
2.1.2 大机采高度(3.5~5.0 m) |
2.2 综放采场顶板结构与稳定性 |
3 顶煤破碎运移放出规律分析 |
3.1 顶煤放出机理 |
3.1.1 顶煤体内应力场分布规律 |
3.1.2 顶煤破碎机理 |
3.2 综放采场顶煤冒放性分类评价 |
3.3 顶煤放出规律的理论 |
4 放顶煤开采工艺 |
4.1 常规的综放工艺研究 |
4.2 特殊开采条件下综放开采工艺 |
4.2.1 特殊地质条件下综放开采工艺 |
4.2.2 具有冲击倾向性煤层综放开采工艺 |
4.2.3 瓦斯突出煤层综放开采工艺 |
4.2.4 综放工作面防灭火技术 |
4.3 综放工序的时空配合关系 |
5 综放工作面“三机”装备研究进展 |
5.1 综放液压支架装备发展 |
5.1.1 综放支架放煤口位置及结构的发展 |
5.1.2 综放支架架型结构的发展 |
5.1.3 智能化综放支架控制系统的最新发展 |
5.2 综放采煤机装备发展 |
5.2.1 综放采煤机装备研究现状 |
5.2.2 滚筒采煤机 |
5.2.3 发展趋势 |
5.3 刮板输送机装备发展 |
5.3.1 研究现状 |
5.3.2 浮煤清理装置 |
5.3.3 发展趋势 |
6 结语与展望 |
(4)大厂煤矿机械化改造中的井田开拓方式优化设计研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 论文的研究背景 |
1.2 国内外井田开拓的研究现状 |
1.2.1 国外矿井开拓现状 |
1.2.2 我国矿井设计现状及发展趋势 |
1.3 主要研究内容 |
第二章 井田概况及地质特征 |
2.1 井田概况 |
2.1.1 交通位置 |
2.1.2 地形地貌 |
2.1.3 河流分布及范围 |
2.1.4 气象及地震 |
2.1.5 井田经济及煤炭开发情况 |
2.1.6 水源、电源及通信情况 |
2.2 地质特征 |
2.2.1 井田地质构造 |
2.2.2 井田地层 |
2.2.3 煤层特征及煤质 |
2.3 开采技术条件 |
2.3.1 井田水文地质条件 |
2.3.2 工程地质条件 |
2.3.3 环境地质 |
2.4 瓦斯、煤尘爆炸危险性、煤的自燃倾向和地温 |
2.4.1 瓦斯 |
2.4.2 煤层瓦斯压力及透气性及其他参数 |
2.4.3 煤层自燃倾向性 |
2.4.4 煤尘爆炸性倾向性 |
2.4.5 地温 |
第三章 井田开拓优化设计 |
3.1 井田境界及储量 |
3.1.1 井田境界 |
3.1.2 矿井储量 |
3.2 矿井设计生产能力及服务年限 |
3.2.1 矿井工作制 |
3.2.2 矿井设计生产能力 |
3.2.3 矿井服务年限 |
3.3 井田开拓 |
3.3.1 影响本井田开拓的主要因素 |
3.3.2 工业场地位置的优化选择 |
3.4 开拓方式优化设计 |
3.5 井筒 |
3.6 井底车场及硐室优化设计 |
3.6.1 井底车场形式及空重车线长度 |
3.6.2 井底车场硐室名称及位置 |
3.7 大巷运输及设备 |
3.7.1 运输方式的选择 |
3.7.2 矿车 |
3.7.3 辅助运输设备选型 |
3.7.4 整流设备选择 |
3.8 盘区布置及装备 |
3.8.1 采煤方法 |
3.8.2 工作面顶板管理方式、支架选型 |
3.8.3 工作面的循环数、年进度及工作面长度 |
3.8.4 盘区布置 |
第四章 通风与安全 |
4.1 矿井通风 |
4.1.1 通风方式及通风系统 |
4.1.2 风井的数目、位置、服务范围及服务时间 |
4.1.3 矿井风量计算 |
4.2 灾害预防及安全装备 |
4.2.1 预防瓦斯爆炸的措施 |
4.2.2 粉尘的综合防治 |
4.2.3 预防井下火灾的措施 |
4.2.4 预防井下水灾的措施 |
4.2.5 防止顶板垮塌措施 |
4.2.6 矿山救护 |
4.2.7 其他 |
4.3 煤矿井下安全避险“六大系统” |
4.3.1 矿井安全监控系统 |
4.3.2 井下人员定位系统 |
4.3.3 井下紧急避险系统 |
4.3.4 矿井压风自救系统 |
4.3.5 矿井供水施救系统 |
4.3.6 矿井通信联络系统 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
(5)我国井工煤矿开采技术装备回顾及展望(论文提纲范文)
1 厚煤层开采技术发展 |
1.1 分层开采技术工艺及装备 |
1.2 一次采全高技术工艺及装备 |
1.3 综采放顶煤技术工艺及装备 |
1.4 安全高效现代化矿井建设 |
1.4.1 高产高效向安全高效矿井的转变 |
1.4.2 安全高效矿井建设 |
2 薄及中厚煤层开采技术及装备发展 |
3 安全高效矿井配套技术装备发展 |
3.1 综合机械化掘进设备 |
3.2 提升运输技术与装备 |
3.3 建井技术与装备 |
4 中国井工煤矿开采发展前景展望 |
(1)复杂煤层安全高效开采。 |
(2)井工煤矿智能无人开采。 |
(3)煤炭资源绿色一体开采。 |
(6)煤矿地质保障技术现状与智能探测前景展望(论文提纲范文)
1 煤矿地质保障技术的发展历程 |
1.1 煤炭资源勘查的地质保障 |
1.2“双高矿井”建设的地质保障 |
1.3 煤矿安全高效生产地质保障 |
1.4 煤矿智能化开采的地质保障 |
2 煤矿地质保障技术的主要进展 |
2.1 高精度三维地震勘探技术 |
2.2 孔-巷瞬变电磁探测技术 |
2.3 煤矿井下反射槽波探测技术 |
2.4 大透距多频同步无线电波透视技术 |
2.5 煤矿井下长距离定向钻进技术与装备 |
2.6 煤矿水害隐患探查与防治技术 |
3 煤矿智能开采地质保障的技术难题 |
3.1 采煤工作面地质透明化精度偏低 |
3.2 掘进工作面前方智能化随掘随探 |
3.3 智能化超前探测、监测与预警技术 |
3.4 绿色开采倒逼地质保障技术进步 |
4 煤矿智能开采地质保障的发展方向 |
4.1 煤矿井下钻探物探协同探测 |
4.2 煤矿井下随掘智能超前探测 |
4.3 煤矿动力灾害智能监测预警 |
4.4 透明矿井三维地质动态建模 |
5 结语 |
(7)我国煤矿安全高效开采地质保障系统研究现状及展望(论文提纲范文)
1 我国煤田复杂地质构造和煤炭开采机械化需求催生了煤矿安全高效矿井地质保障系统的建立 |
1.1 矿井工程地质勘查技术 |
1.2 矿井地球物理勘查技术 |
2 煤矿高分辨三维地震勘探技术的发展促进了煤矿安全高效矿井地质保障系统建设的成熟 |
2.1 煤矿采区地质构造高分辨三维地震探测技术 |
2.2 煤与瓦斯突出隐患地震预测技术 |
2.3 矿井突水灾害隐患地震预测技术 |
3 矿井地质透明化是当前煤矿安全高效矿井地质保障系统发展的努力方向 |
4 结语 |
(8)叙永煤矿极薄煤层滑锯式机械化开采方法研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究与应用现状 |
1.2.1 国内外薄煤层开采的研究现状 |
1.2.2 国内外薄煤层开采的应用现状 |
1.2.3 国内外覆岩运移规律的研究现状 |
1.3 研究内容及技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
2 极薄煤层滑锯式机械化开采方法 |
2.1 工程概况 |
2.1.1 地层及地质构造 |
2.1.2 煤层和煤质 |
2.1.3 各煤层瓦斯含量 |
2.1.4 主要开采技术条件 |
2.2 薄煤层滑锯式机械化开采方法 |
2.2.1 工作面与巷道布置 |
2.2.2 回采工艺 |
2.2.3 主要技术指标 |
2.3 工作面“三机”研制与配套 |
2.3.1 移推液压支座 |
2.3.2 滑锯采煤机 |
2.3.3 刮板输送机 |
2.3.4 “三机”配套与主要参数 |
2.4 本章小结 |
3 极薄煤层开采覆岩运移规律数值模拟研究 |
3.1 数值模拟软件及方案 |
3.1.1 数值模拟软件 |
3.1.2 数值模拟方案 |
3.2 工作面上覆岩层运移规律 |
3.2.1 采场覆岩塑性区分布特征 |
3.2.2 采场覆岩应力分布特征 |
3.2.3 采场覆岩垂直位移云图 |
3.3 本章小结 |
4 极薄煤层开采巷旁充填体稳定性分析 |
4.1 护巷与顶板管理 |
4.1.1 采用切顶成巷方式 |
4.1.2 柔模护巷方式 |
4.2 巷道支护形式 |
4.2.1 工作面切眼断面与支护 |
4.2.2 巷道断面与支护 |
4.3 巷旁充填体力学性能及稳定性控制 |
4.3.1 巷旁充填体料浆配比 |
4.3.2 巷旁充填体稳定性分析 |
4.4 本章小结 |
5 叙永煤矿极薄煤层滑锯式机械化开采工程实践 |
5.1 工程实施方案 |
5.2 工作面安全保障技术 |
5.2.1 通风与瓦斯治理技术 |
5.2.2 火灾与水害防治技术 |
5.2.3 其他 |
5.3 技术经济效益分析 |
5.3.1 经济效益预测 |
5.3.2 社会效益分析 |
5.4 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
(9)矿井带式输送机能耗优化控制系统研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 课题研究背景和意义 |
1.2 本课题国内外研究现状及发展趋势 |
1.2.1 矿井带式输送机国内外研究现状及发展趋势 |
1.2.2 矿井带式输送机节能技术研究现状 |
1.3 论文研究的主要内容与结构安排 |
2 带式输送机运行阻力与功率消耗因素分析 |
2.1 带式输送机总体结构和工作原理 |
2.1.1 带式输送机的总体结构 |
2.1.2 带式输送机的工作原理 |
2.2 带式输送机运行阻力分析 |
2.3 带式输送机功率消耗分析与计算 |
2.3.1 影响带式输送机功率消耗的主要因素 |
2.3.2 带式输送机带速与煤流量的匹配分析 |
2.4 本章小结 |
3 带式输送机能耗优化模型建立与模糊控制器设计 |
3.1 神经网络与粒子群算法概述 |
3.1.1 神经网络算法概述 |
3.1.2 粒子群算法概述 |
3.1.3 改进粒子群算法概述 |
3.2 带式输送机BP神经网络能耗优化模型的建立 |
3.2.1 构建带式输送机BP神经网络能耗优化模型 |
3.2.2 粒子群算法对模型参数的优化 |
3.2.3 改进粒子群算法对模型参数的优化 |
3.3 带式输送机模糊控制器设计 |
3.3.1 模糊算法概述 |
3.3.2 模糊控制器的结构与原理 |
3.3.3 带式输送机模糊控制器的设计 |
3.4 本章小结 |
4 矿井带式输送机控制系统设计 |
4.1 概述 |
4.1.1 控制系统设计目标 |
4.1.2 控制系统总体结构 |
4.1.3 控制系统工作原理 |
4.1.4 控制系统实现功能 |
4.2 控制系统硬件设计 |
4.2.1 概述 |
4.2.2 PLC控制系统设计 |
4.2.3 变频器的控制 |
4.2.4 煤流量的监测 |
4.2.5 功率的监测 |
4.2.6 速度及综合保护传感器 |
4.3 控制系统软件设计 |
4.3.1 概述 |
4.3.2 PLC控制程序设计 |
4.3.3 基于WinCC的上位机软件设计 |
4.3.4 通讯设计 |
4.4 本章小结 |
5 矿井带式输送机控制系统调试及节能效果分析 |
5.1 矿井带式输送机控制系统的调试 |
5.1.1 硬件系统的调试 |
5.1.2 软件系统的调试 |
5.1.3 能耗优化控制系统的调试 |
5.1.4 保护系统的调试 |
5.2 上位机界面的调试 |
5.2.1 登录界面的调试 |
5.2.2 主界面的调试 |
5.2.3 历史曲线界面的调试 |
5.2.4 报表查询界面的调试 |
5.2.5 故障保护界面的调试 |
5.2.6 故障记录界面的调试 |
5.3 节能效果分析 |
5.3.1 电气节能分析 |
5.3.2 机械损耗分析 |
5.4 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
(10)煤矿智能化(初级阶段)技术体系研究与工程进展(论文提纲范文)
0 引言 |
1 智能化煤矿顶层设计 |
2 煤矿智能化基础理论 |
2.1 煤矿多源异构数据模型及动态关联关系 |
2.2 时变多因素影响下综采设备群分布式控制 |
2.3 综采设备健康状态评价、预测与维护 |
3 煤矿智能化关键技术 |
3.1 煤矿高精度三维地质建模技术 |
3.2 基于地质模型的煤矿“一张图”技术 |
3.3 接续工作面智能设计与三维建模 |
3.4 智能快速掘进关键技术 |
3.5 基于高精度三维地质模型的工作面智能开采 |
3.6 井下精准定位技术 |
3.7 带式输送机智能监控关键技术 |
3.8 辅助运输智能化关键技术 |
3.9 智能通风关键技术 |
3.1 0 智能化分选技术 |
3.1 1 5G技术在井下的初步应用 |
3.1 2 煤矿智能化关键技术难点分析 |
4 智能化煤矿工程实践现状及问题 |
4.1 神东煤炭集团智能化煤矿建设实践 |
4.2 兖矿集团智能化煤矿建设实践 |
4.3 同煤集团智能化煤矿建设实践 |
4.4 阳煤集团智能化煤矿建设实践 |
4.5 黄陵矿业集团智能化煤矿建设实践 |
4.6 淄博矿业集团智能化煤矿建设实践 |
4.7 新汶矿业集团智能化煤矿建设实践 |
4.8 张家峁煤矿智能化建设实践 |
4.9 滨湖煤矿智能化建设实践 |
4.1 0 智能化煤矿建设实践中存在的问题 |
5 煤矿智能化标准体系建设 |
6 煤矿智能化创新联盟促进创新产业新生态 |
7 结语 |
四、煤矿机械的发展是高产高效矿井建设的可靠保证(论文参考文献)
- [1]厚煤层综放开采顶煤放出规律及工艺参数优化研究[D]. 刘一扬. 太原理工大学, 2021(01)
- [2]煤炭智能开采地质保障技术及展望[J]. 董书宁,刘再斌,程建远,陈宝辉,代振华,李丹. 煤田地质与勘探, 2021(01)
- [3]我国煤矿综放开采40年:理论与技术装备研究进展[J]. 宋选民,朱德福,王仲伦,霍昱名,刘一扬,刘国方,曹健洁,李昊城. 煤炭科学技术, 2021(03)
- [4]大厂煤矿机械化改造中的井田开拓方式优化设计研究[D]. 赵波. 昆明理工大学, 2021(01)
- [5]我国井工煤矿开采技术装备回顾及展望[J]. 郭俊生. 中国煤炭, 2021(02)
- [6]煤矿地质保障技术现状与智能探测前景展望[J]. 程建远,王会林. 智能矿山, 2020(01)
- [7]我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 彭苏萍. 煤炭学报, 2020(07)
- [8]叙永煤矿极薄煤层滑锯式机械化开采方法研究[D]. 伍好好. 西安科技大学, 2020(01)
- [9]矿井带式输送机能耗优化控制系统研究[D]. 刘宝军. 西安科技大学, 2020(01)
- [10]煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 王国法,任怀伟,庞义辉,曹现刚,赵国瑞,陈洪月,杜毅博,毛善君,徐亚军,任世华,程建远,刘思平,范京道,吴群英,孟祥军,杨俊哲,余北建,宣宏斌,孙希奎,张殿振,王海波. 煤炭科学技术, 2020(07)