交流输电与直流输电的区别与应用_交流输电论文

交流输电和直流输电的区别和应用,本文主要内容关键词为:区别论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

高二物理《交变电流》这一章节中,我们向学生讲授了交流输电,有学生问起直流是否可以输电啊?直流输电和交流输电有何不同、区别?我们为何没有用直流输电呢?当学生这么问时,我们教师就应该向学生详细地说一下现实中有关交流输电和直流输电的有关知识。

输电是发电和用电的中间环节,现代输电工程中并存着两种输电方式,高压交流输电和高压直流输电,两种方式各有自己的长处和不足,同时使用它们,可以取得更大的经济效益。

一、输电方式的变化

人类输送电力,已有100多年的历史了。输电方式是从直流输电开始的,1874年俄国彼得堡第一次实现了直流输电,当时输电电压仅100V,随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V,但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难,由于不能直接给直流电升压,使得输电距离受到极大的限制。不能满足输送容量增长和输电距离增加的要求。

19世纪80年代末发明了三相交流发电机和变压器。1891年,世界上第一个三相交流发电站在德国劳风竣工,以3×10[4]V高压向法兰克福输电,此后,交流输电就普遍的代替了直流输电。但是随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交变电流遇到了一系列不可克服的技术上的障碍,与此同时,大功率换流器(整流和逆流)的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到了人们的重视。1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电的装置;1954年在瑞典,从本土到果特兰岛,建立起了世界上第一条远距离高压直流输电工程。

二、直流输电系统

在直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交变电流。如图1所示为高压直流输电的典型线路示意图。在输电线路的始端,发电系统的交变电流经换流变压器T[,1]、T[,2]升压后,送到整流器H[,1]、H[,2]中去。整流器的主要部件是可控硅变流器和进行交直流变换的整流阀,它的功能是将高压交变电流变为高压直流电后,送入输电线路,直流电通过输电线路L[,1],和L[,2]送到逆变器H[,3]和H[,4]中。逆变器的结构与整流器相同而作用刚好相反,它把高压直流电变为高压交变电流。再经过变压器T[,3]和T[,4]降压,交流系统A的电能就输送到交流系统B中。在直流输电系统中,通过改变换流器的控制状态,也可以把交流系统B中的电能送到系统A中去,也就是说整流器和逆变器是可以相互转换的。

图1

三、交变电流和直流电的优缺点比较

高压直流输电与高压交流输电相比,有明显的优越性。历史上仅仅由于技术的原因,才使得交流输电代替了直流输电。下面先就交变电流和直流电的主要优缺点做出比较,从而说明它们各自在应用中的价值。

交变电流的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交变电流源和交流变电站与同功率的直流电源和直流换流器相比,造价更低廉;交变电流可以方便地通过变压器升压和降压,这给配送电能带来了极大的方便;这是交变电流与直流电相比所具有的独特优势。

直流电的优点主要表现在输电方面:

(1)输送功率相同时,直流输电所用的线材仅为交流输电2/3~1/2。

直流输电采用两线制,可以以大地和海水做回线,与采用三线制三相交流输电相比,在输电线截面积相同和电流密度相同的条件下,即使不考虑趋肤效应,也可以输送相同的电功率,而输电线和绝缘材料可节约1/3。设两线制直流输电线路输送功率为P[,d],则P[,d]=2U[,d]I[,d];设三线制三相交流输电线路所输送的电功率为P[,a],P[,a]=U[,a]I[,a]cos。对于超高压线路,功率因数一般较高,可取为0.945。设直流输电电压等于交流输电电压的最大值,即U[,d]=U[,a],且I[,d]=I[,a],则P[,d]/P[,a]=

如果考虑到趋肤效应和各种损耗(绝缘材料的介质损耗、磁感应的涡流损耗、架空线的电晕损耗等),输送同样功率交变电流所用导线截面积大于或等于直流输电所用导线的截面积的1.33倍。因此,直流输电所用的线材几乎只有交流输电的一半。同时,直流输电杆塔结构也比同容量的三相交流输电简单,线路走廊占地面积也小。

(2)在输电线路中,直流输电没有电容电流产生,而交流输电线路存在电容电流引起的损耗。

在一些特殊场合,必须用电缆输电。例如高压输电线经过大城市时,采用地下电缆;输电线经过海峡时,要用海底电缆。由于电缆芯线和大地之间形成同轴电容在交流高压输电线路中,空载电容电流极为可观,一条200kV的电缆,每千米的电容约为0.2μF,每千米需供给充电功率约为3×10[3]kW,在每千米输电线路上,每年就要耗电2.6×10[7]kW·h。而在直流输电中,由于电压波动很小,基本上没有电容电流加在电缆上。

(3)直流输电时,其两侧交流系统不需同步运行,而交流输电必须同步运行。

交流远距离输电时,电流的相位在交流输电系统的两端会产生显著的相位差;并网的各系统交变电流的频率虽然规定统一为50Hz,但实际上常产生波动。这两种因数常引起交流系统不能同步运行,需要用复杂庞大的补偿系统和综合性很强的技术加以调整,否则就可能在设备中形成强大的循环电流损坏设备,或造成不同步运行的停电事故。在技术不发达的国家里,交流输电距离一般不超过300km,而直流输电线路互连时,它两端的交变电流网可以用各自的频率和相位运行,不需进行同步调整。

(4)直流输电发生故障的损失比交流输电小。

两个交流系统若用交流线路互连,则当一侧线路发生短路时,另一侧要向一侧输送短路电流,因此使两系统原有开关切断短路电流的能力受到威胁,需要更换开关,而直流输电中,由于采用可控硅装置,电路功率能迅速、方便地进行调节,直流输电线路上基本上不向发生短路的交流系统输送短路电流,故两则交流系统的短路电流与没有互连时一样,因此不必更换两侧原有开关及载流设备。

在直流输电线路中,各极是独立调节和工作的,彼此没有影响。所以,当一极发生故障时,只需停运故障极,另一极仍可输送不少于一半功率的电能。但在交流输电线路中,任一相发生永久性故障,必须全线停电。

四、我国直流输电现状及发展前景

我国在1977年就建成了第一条31kV直流输电工业性实验电路。我国超高压直流输电工程,有从葛洲坝至上海的500kV线路和青海龙羊峡至北京的输电工程。

直流输电在我国有广阔的发展前景,主要体现在以下方面:

(1)我国能源与负荷分布不均,需要大容量远距离输电。目前,我国的主要能源(水力资源和煤炭资源)主要集中在西南、中南、西北及华北地区,而负荷主要集中在京津地区、东北及华东、华南地区。所以不可避免要进行大容量远距离输电。青海龙羊峡至北京的输电工程就属于这一类的。

(2)用直流线路联络两个交流系统,以取得较大的经济效益。葛洲坝至上海直流输电工程属于这一类的。

(3)用海底电缆跨海送电。我国沿海岛屿众多,许多岛屿(如舟山群岛、海南岛、崇明岛、台湾岛等)需要由大陆送电或互联并网。舟山直流输电工程就属于这一类的。

(4)用直流输电向大城市中心供电,以解决大城市电能日益增长的迫切需要。在英国,已由金斯诺思用直流输电向伦敦供电。我国上海、北京等大城市不久也将会实现。

让学生尽可能的全面了解现实生活和生产中有关输电的知识,这样可以提高学生对物理和科学更加有兴趣和学习的动力。

标签:;  ;  ;  ;  

交流输电与直流输电的区别与应用_交流输电论文
下载Doc文档

猜你喜欢