物理过程情境中元认知策略积累的实验研究_元认知论文

物理过程情景下元认知策略积累的实验研究,本文主要内容关键词为:实验研究论文,情景论文,物理论文,策略论文,过程论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

元认知水平的提高可以通过元认知专项训练并结合学科知识的渗透来达成,在物理教学中,元认知训练与物理知识融合,会使元认知训练在物理课堂中的机会更多、空域更广、针对性更强,由此促使的元认知水平提高会更加贴近学生的发展需要。

一、元认知策略积累的实验方法

1.实验的依据和设想

高中物理知识中,很大一部分是研究物理过程中的物体运动及其相互作用规律的,学生是在具体的物理过程情景中求解问题或完成学习任务的,其间生成的策略或使用的策略都与具体物理过程相关联。

物理课堂中,教师通过对物理过程研究的“回顾分析”,可以生成与该过程对应的策略;借助“多向点评”,对生成的策略使用条件、条件适用判断准则等进行生生、师生讨论点评,可以获得元认知策略。元认知策略是针对策略的,而有关物理的策略与物理过程对应,则元认知策略也是以物理过程为基础的,它带有物理过程的最基本特点,但不面对具体的物理过程,是物理过程“类”的元认知策略。

本研究将物理过程作为元认知训练载体的基本单元,以物理过程为依托,让学生生成与物理过程相关的策略后,在多向点评中生成这些策略的元认知策略,以提高学生面对物理过程思维的元认知计划、监控和调节水平;据此丰富学生的元认知知识,提高学生的元认知水平,以促使学生独立自主学习能力的提高。

由此,本实验的设想是:多向点评教学措施和物理过程训练材料构成一个组合措施——物理过程元认知策略积累教学措施(以下称组合措施),将该组合措施作为教学控制变量,在高三物理课堂教学中实施,在实施前后进行元认知问卷调查,通过单因素方差分析了解教学组合措施对学生元认知策略积累的实施效果。

2.教学实验的实施与效果

(1)教学实验实施

物理过程最基本的特点是可以按“段”划分与链接,在动力学问题中就可以按受力情况或运动特征进行分“段”。

如质量为m的小物块,从半径为R的四分之一光滑圆弧顶端由静止滑下,再在与圆弧底端平滑连接的水平面上运动,已知物块与接触面的动摩擦因数为μ,求物块在水平面滑行的最大距离。

①运动特征判断策略。通过初速度、加速度(或合力)情况及初速度与合力方向的关系确定运动类型。

②分段目标确定策略。按段与段的连接量确定上段求解目标,如两段连接处v相等,则圆弧运动段的目的是求该段末端的速度。

③按段确定规律使用策略。每段的运动类型都有其自身的物理规律、公式,如圆弧运动的变力和只有重力做功特征说明其必会遵循机械能守恒定律。这些策略涉及每一段的判断依据(运动特征)、适用规律(物理定律)、指向目标、分段标志(始终状态)等。

元认知策略的积累正是通过对过程分析策略的讨论、点评来实现。需要做到以下几点:①使学生在整体解题思路中学会将题述全过程分段,并确定各段目标,即获得目标分解元认知策略,该元认知策略指向运动特征判断策略和分段目标确定策略;②让学生依据运动特征确定所用物理规律,即获得过程特征与物理规律对应的元认知策略,该元认知策略是用于物理规律选择的,指向运动特征判断、按段确定规律使用策略;目标分解、特征与规律对应两者都属于元认知计划策略。

在物理过程背景下,一旦有了明确的物理过程分段、细化的段目标,学生就会有分段跟踪、目标跟踪和进程跟踪等元认知提取策略。元认知评估策略会有分段评估和适时评估,元认知调节策略自然也有分段调节和适时调节(表1)。

(2)物理教学效果

进行实验的班级为笔者任教的2009届高三(3)班,在2008年9月广州市越秀区物理统测至2009年3月广州市第一次模拟考期间实施教学实验,并在这两个时间进行问卷的前后测。该班学生平均分一直与同级另一平行班有较大差距,2008年9月的区统测物理平均分就低于平行班11分,到2009年1月市统测物理平均分仍低7分;两次统测最高分数段人数3班与平行班是1:5,明显少于平行班。通过物理过程与多向点评组合教学措施的实施,直到2009年3月广州市第一次模拟考试,实验班的平均分较平行班只低4.7分,第一次在5分的教学正常差值以内,最高分数段人数差距也缩小。到2009年6月高考,实验班平均分与平行班的差距仅为2.8分,差距进一步缩小,而最高分数段(130分以上)人数比例却变为3∶1,反超同级平行班。教学措施对学生整体水平的提高和高分段学生的提高有明显帮助。

3.实验测试和分析方法

问卷共74题,参照董英华的《学生元认知水平量表的设计》、耿占胜的《高中物理学习策略研究》、侯文燕的《高一物理概念学习策略研究》等论文中的问卷改编而成;问卷一致性测评都在80%以上;74题中有3对(6题)对偶测谎题参与统计,4题完美性检验题不参与统计。样本数51人,删除由对偶测谎和完美性检验确定的无效问卷后,得到前后测有效问卷各28份。数据用SPSS 15.0处理。

二、实验的测试结果分析

1.元认知计划策略

在物理过程背景下,元认知计划策略有终点目标确定、切入点确定、认知目标分解和认知策略选择(表2),前三项在齐性检验中相伴随概率值(0.569、0.868、0.774)都大于0.05,满足同方差假设,且三项前后测的均值分别都是提高。

终点目标和切入点确定指依据物理任务已知条件规划完成物理任务思维的起止,是对思维整体方向的把握;其指向为将文字信息转化为物理情景与数学形式的认知策略。如上述例题中所求的物块滑行多远就要转化为和位移s是多少。下页表3中终点目标确定指标(P=0.004<0.01)和切入点确定指标(P=0.011<0.05)都有显著性差异,可以认为教学组合措施能够使学生形成的终点目标和切入点确定等元认知计划策略在有效地调用认知策略、把握思维整体方向等方面的提高有显著效果。

在表3中,认知目标分解指标的测试有显著性差异(P=0.002<0.01),可以认为教学组合措施使学生在有效调用运动特征判断策略和分段目标确定策略,并将整体思路按运动特征段细分目标等方面有显著提高;且表3中认知目标分解指标测试的F值(F=10.834)最高,说明前后测该项方差相等的可能性最小,可以认为组合措施对积累目标分解的效果在表3的三项中最显著。这正是以物理过程为依托、以物理过程分段和段目标细分为手段的积累方式的结果,目标分解元认知计划策略也成了物理过程情景下的元认知计划策略组群的核心。

在表2中认知策略选择的前后测均值分别为10.21和11.54,学生有所提高。但齐性检验相伴随概率值为0.014,因小于0.05而不满足同方差假设,不对该项做单因素方差分析。

2.元认知提取策略

元认知提取策略就是调出思维信息的方式、方法。分段跟踪元认知策略是按分段序列进行思维状况信息的提取;目标跟踪元认知策略是以所确定的目标为标志提取思维的信息;进程跟踪元认知策略是依据段和目标对自己思维快慢、进度信息的提取。表4中四项在齐性检验中相伴随概率值(0.162、0.871、0.811、0.080)都大于0.05,满足同方差假设,各项前后测的均值也都有提高。

下页表5中的目标跟踪指标有显著性差异(P=0.012<0.05),说明教学组合措施使学生能以段目标为标志,提取自己进行中的思维走向哪个目标、与目标间的差距、正在用什么物理规律等相关信息的有效性有显著提高。如在上述例题中,就是确定自己的思维是走向中间目标的v,还是走向最终目标的s;是正在用牛顿第二定律,还是正在用机械能守恒定律等,这些觉察较以往更为畅顺、确定性更高。进程跟踪指标也有显著性差异(P=0.000<0.01),反映的是通过教学组合措施的训练,学生对自己思维快慢、进度信息的感知水平有显著提高。分段跟踪指标没有显著性差异(P=0.076>0.05),这是因为学生原来已有分段跟踪觉察自己思维、按段提取思维信息的习惯,只是在教学组合措施的训练之前,这些段不是学生自主、有意识、有目的地划分的,但这种被动、无意识、无明确目的所得到的段,也能使学生学会按段提取自己思维信息的方法。

思维信息提取的基础是思维觉察,思维觉察水平越高,思维信息提取得越快捷、越全面、越精确;表5中的思维觉察指标有显著性差异(P=0.026<0.05),可以认为教学组合措施的实施,让学生养成了以过程段目标为标志的思维信息提取的习惯,促使思维信息提取的方式更加多样、目的性更强,获得思维信息的点更多、面更广、量更大,从而使学生的思维觉察水平显著提高。

3.元认知评估策略

分段评估是依据分段跟踪、目标跟踪、进程跟踪所提取的信息对思维进行评估,判断思维是否需要调整;适时评估是不按物理过程段、个体认为适宜的时候对思维的评估,它依靠学生个体的学习习惯,有一定的随机性。表6中分段评估和适时评估在齐性检验中相伴随概率值(0.644和0.581)都大于0.05,满足同方差假设,前后测的均值都是提高。

表7中分段评估指标有显著性差异(P=0.013<0.05),说明通过教学组合措施的实施,学生学会了依据分段跟踪、目标跟踪、进程跟踪所提取的信息对思维进行评估的方法,他们在确定自己的思维处于哪一物理过程段、是否运用了该段运动特征对应的物理规律,以及思维行进的方向是否正在走近该物理过程段的目标等方面有了显著提高。如上述题例中,学生求解在水平面匀减速直线运动段的a时,能明确评估自己是否运用牛顿第二定律、是否有利于后期运用匀减速直线运动规律的公式求最后的s等。适时评估指标没有显著性差异(P=0.559>0.05),说明教学组合措施对学生原有的思维评估方式没有影响,只是丰富了学生对自己思维的评估方法。

4.元认知调节策略

调节与评估是对应的,依据分段评估的结果对思维进行分段调节,下页表8中分段调节的齐性检验中相伴随概率值0.349,大于0.05,满足同方差假设,且前后测的均值是提高。表9中该指标的显著性差异(P=0.019<0.05)说明通过教学组合措施的实施,学生学会了按段内策略和物理规律运用、思维走向都要服务于段目标实现的原则对自己的思维进行调节,且思维调节水平有了显著提高。

适时调节齐性检验相伴随概率值为0.011(表8),因小于0.05而不满足同方差假设,不对该项做单因素方差分析。

5.整体元认知策略

元认知策略由元认知计划、元认知提取、元认知评估和元认知调节等策略构成,是个体策略性知识的重要组成部分,表10中元认知策略的齐性检验中相伴随概率值0.960,大于0.05,满足同方差假设,且前后测的均值是提高。

表11的元认知策略指标的显著性差异(P=0.001<0.01)可以理解为通过教学组合措施的实施,学生的元认知策略内容得到充实,积累途径获得补充,而元认知策略间的协调性、元认知监控的整体效应有了显著提高。

三、结论和建议

综合以上研究结果,笔者认为在物理过程情景下的多向点评教学措施对学生的物理元认知策略积累有促进作用。作为素材的物理过程,让元认知策略有了根植的沃土;多向点评教学措施,让元认知策略在课堂教学中有了生成的机制。这两者的组合,让物理过程、面对过程的物理策略及由此生成的元认知策略成为一个整体,使元认知策略有了具体的指向。用“段”的特征概括物理过程,使具体物理过程情景下生成的元认知策略类化,让元认知策略具有很强的迁移性,使学生能在不同的物理情景中有效地选择、调用物理策略,判断、监控物理策略适用情况并加以调节。

比较元认知专项训练与结合学科知识的渗透训练,对课堂教学而言,笔者认为结合学科知识的渗透训练才是根本,只有积累了大量各学科具体情境下的元认知策略,更加高级、抽象的元认知策略才能生成。

标签:;  ;  ;  ;  ;  

物理过程情境中元认知策略积累的实验研究_元认知论文
下载Doc文档

猜你喜欢