摘要:数学课堂要大力实施人本主义教学,以学生为本,有效激发学生学习数学的兴趣,提高学生的数学思维能力,发展学生的数学应用意识,并为学生身心的可持续性发展打下扎实的基础。数学课堂教学中教师掌握有效的策略,能激活学生们的思维,达到最佳教学效果,从而提高教学质量。
关键词:高中数学、课堂教学、构建
课堂教学要提高学生的能力,并加强双基的训练!不但要激发学生的智力,而且还要培养学生的创造力;当前,高中《数学课程标准》是对数学课程的全新定位,指出数学课程不仅仅是为了传授数学知识与技能,更重要的是为了让学生掌握数学思想、方法,体会数学理性精神,认识数学的价值,倡导终身教育已成为现代社会的基本理念。
一、建构主义与高中数学教学的契合
数学,作为一门古老的基础学科,在漫长的发展过程中,形成了严谨的科学知识体系,这种知识上的衔接性、逻辑性都存在很好的建构性,尤其是高中数学,在小学、初中基本数概念、顺序、换元等基本数学知识模式储备的前提下,愈显知识体系上的建构特点。纵观高中数学内容,从集合到映射,从映射到一次函数,再到二次函数、反函数;从整数到分数,从有理数到无理数,再到复数;从排列到组合,进而凝练出二项式;从平面几何到立体几何,又到平面解析几何,这些知识模块内的层次递进,无不有着严格的逻辑性,在知识的学习上环环相扣,前提性知识的学习有着某种不可替代性,这种严谨性从另一方面恰恰利于学生对知识的建构性、规律性学习,高中数学课程的这种本质性建构特点,为建构主义学习在高中数学教学中的合理利用提供了基础。从学生自身来讲,高中生的抽象逻辑性思维高度发展,知识掌握的概括性和间接性进一步增强,与初中生相比,高中生更能够从多角度、多维度思考问题,并且能运用综合、分析、判断、推理等更加复杂的方法进行规律的探寻,这种逐渐摆脱具体形象的思维模式,有利于高中生短时间内对高度抽象的数学知识进行有效掌握,同时,高中生的创造能力也迅速发展,不再单一被动地一味接受既有知识,更倾向于结合自身知识体系对知识进行理解和消化,可以说,高中生数学知识的准备性和心理发展的定型化,为高中数学的建构学习,提供了客观和主观条件。
二、创设促进自主学习的问题情境
当今流行的建构主义学习理论认为,当信息渗透于有意义的情境之中的时候,当创设隐喻和类比的时候,当给学习者提供能够使其产生与其个人相关联的问题的机会的时候,学习者就能够进行理想的学习。赫尔巴特等也提出,应该让学生就学科内容形成问题,想知道“事情为什么会是这样的”,然后再去探索,去寻找答案,解决自己认识上的冲突,通过这种活动来使学生建构起对知识的理解。
期刊文章分类查询,尽在期刊图书馆问题解决活动有可能使学生更主动、更广泛、更深入地激活自己的原有经验,理解分析当前的问题情境。因此,我们强调把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,来学习隐含于问题背后的数学知识,形成解决问题的技能,并形成自主学习的能力。因此,我们认为,首先教师要精心设计问题,鼓励学生质疑,培养学生善于观察,认真分析、发现问题的能力。其次,积极开展合作探讨,交流能得出很多结论。当学生所得的结论不够全面时,可以给学生留下课后再思考、讨论的余地,这样就有利于激发学生探索的动机,培养他们自主动脑、力求创新的能力。如在讲解等比数列的通项公式时,笔者采取实例设疑导入法。先提出一个通俗而有趣的问题:用一张报纸(厚0.1毫米)对折30次,想一想,这叠纸大概有多厚?如果对折100次呢?在学生做出了种种估计后,教师提出其厚度远远超过珠穆朗玛峰的高度,学生感到惊诧,产生强烈的求知欲,于是教师引出课题,师生共同分析,推导出通项公式,并计算出h=a30=(2×0.1)×229=0.1×230(毫米)=105(米),远远大于8848米。通过这样创设一个问题情境,就把复杂、抽象而又枯燥的问题简单化、具体化、通俗化了,同时也趣味化了,提高了学生学习数学的兴趣。当然创设情境的方法多种多样,比如创设悬念、空白、融洽、成功、活动等情境,这要求我们数学教师凭借深厚的知识底蕴,良好的教育机智,揭示其数学模型,用艺术的方法教给学生。教师要注意的是,要从教学目标和内容来创设问题情境的方法,符合学生的心理特点,切忌牵强附会。
三、创设认知矛盾,实行多层次随机通达教学
我们说,建构学习的前提是学习者已经具备一定知识基础,对旧知识的体系框架有较清晰的认识,因此,有效进行高中数学课堂教学,需要找准新旧知识的结合点,帮助学生在旧知识上找到认知矛盾,激发学生的兴趣例如,立体几何这一知识模块对于高中生来讲,与以往所掌握的知识有很大区别,往往存在知识经验上的相悖,点线面之间的组合更加灵活抽象,这种变化一方面给教学带来了一定难度,另一方面则恰恰是激发学生认知矛盾,促进探究学习的契机,教师可以通过现场教具演示引导学生进行比较式讨论,如平面几何中“三角形内角和180°”“四边形内角和360°”是如何证明的,在立体几何中是否有变化,如何证明,不但利用了学生在初中时熟知的平面几何知识,降低了知识的突兀性,又恰到好处地引发了学生的认知矛盾,为进一步深入教学提供了很好的切入点。从学生个体角度讲,建构学习来自于学生的主观体验,通过随即通达教学,通过对知识背景的改组变化,丰富学生的体验,让学生从不同侧面不同维度加深对知识的理解,从教学整体效果讲,对课堂的有效建构需要对学生进行分层教学,这是符合实际需要的,不同学生的知识水平不同,知识体系也存在差异,因此有必要对初级学习和高级学习进行区分,以符合不同水平学生的认知特点进行教学设计,如平面解析几何的学习,有的学生对图形更加敏感,而有些学生对数字更加敏感,还有些学生善于进行方程换算,针对这些区别,在解答同一个问题时,可能有的需要从图形旋转倒置人手,有的需要从公式变化人手,有的可能需要通过方程的组合进行引导,这种分层多侧面的授课方式,做到了因材施教,易达到殊途同归的教学效果。
总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。
论文作者:梁密娜
论文发表刊物:《教师教育研究(教学版)》2014年2月供稿
论文发表时间:2014-3-25
标签:知识论文; 学生论文; 数学论文; 情境论文; 高中数学论文; 教师论文; 方法论文; 《教师教育研究(教学版)》2014年2月供稿论文;