摘要:为实现浴缸内水温恒定,本文建立了能量守恒的动态模型,使整个浴缸的水尽可能保持最舒适的温度且不浪费太多水。
基于傅里叶定律及牛顿冷却定律,建立能量守恒模型,能量的散发主要考虑三个方面:浴缸吸收的能量、向空气散发的能量、人体吸收的能量。
运用控制变量的方法,基于上文建立的能量守恒模型,分析浴缸的形状体积和人的形状体积对模型的影响。
关键词:能量守恒;热传导;傅里叶定律;牛顿冷却定律
一.问题重述
普通浴缸在不通过二次加热的情况下很难保持水温的恒定。
考虑空间和时间等因素,建立一个浴缸的水温模型,以确定最佳的策略,使浴缸里的人可以用这个模型来让整个浴缸保持或尽可能接近初始的温度,而不浪费太多的水。使用你的模型来确定你的策略对浴缸的形状和体积,浴缸里的人的形状、体积、温度,以及浴缸中的人的运动等因素的依赖程度。
二.问题假设
2.1浴室内温度恒定不变;
2.2水龙头注入热水的温度恒定;
2.3水龙头流出的热量完全进入浴缸,期间无热量散失;
2.4人在浴缸中洗澡时浴缸中水不向外溅出。
三.模型建立
3.1热传导模型的建立
假设平壁材料均匀,导热系数不随温度而变化(或取平均导热系数);平壁内的温度仅沿垂直于壁面的上方向变化,因此等温面是垂直于工轴的平面;平壁面积与厚度相比是很大的,故从壁的边缘处损失的热可以忽【1】。对此种定态的一维平壁热传导,导热速率Q和传热面积S都为常量,得到如下公式:
3.2 牛顿冷却定律
牛顿冷却定律是温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律。当物体表面与周围存在温度差时,单位时间从单位面积散失的热量与温度差成正比,比例系数称为热传递系数。
其中,q为热流密度,H为物质的对流传热系数,为传热量,S为传热面积。
四.模型实现
4.1 浴缸内壁散热的能量
向浴缸里注入温度为的热水,热水和浴缸壁之间产生热交换,注水结束后,浴缸里的水温为。浴缸中的水温度高于室内温度,所以浴缸中的水通过浴缸壁向室内散发热量。
该阶段的能量守恒公式:
(4)
4.2水散发到空气的能量
散热系数,热水的比热容c,密度为,浴缸深度为h,只考虑水温平衡,可以得出散热系数的简化公式:
(5)
4.3 人体吸收热量
当人体作为考虑对象时,由于人体的表面形态复杂,把身体分为几个部分,且各部分看成圆筒,然后将人体看做这些圆筒的合集,忽略呼吸等微小放热,各部分吸收热量的总和即人体的吸热量。人体表面的对流传热系数可得:
(6)
4.4能量守恒定律
在人进行泡澡的过程中,综合以上三个方面的能量守恒公式,第一次注水时的能量守恒方程:
总能量=散入浴缸壁的热量+散入空气的热量+人体吸收的热量
(7)
人在静止的时候,时间内的能量方程式:
(8)
人在运动的时候,时间内的能量方程式:
(9)
五.模型分析
当浴缸的上表面积不变时,改变浴缸的体积,相应的浴缸的高也会发生变化。浴缸内的能量挥发主要与上表面的散热有关,占能量挥发的90%,上表面不发生变化,故浴缸内的能量挥发相差不大。
六 模型评价
研究对浴缸的形状和体积,浴缸里的人的形状、体积、温度,以及浴缸中的人的运动等因素的依赖程度,本文采取了控制变量的方法,单一变量方式解决问题,使问题简单化。
我们从热力学公式和热力学定律出发,对这一问题进行了分析,因此建立的模型应用于本问题非常有效。
在选取其他因素对模型的影响时,我们参考了影响因素一个可能的取值,在实际中可能并不是很合理。
参考文献:
[1]王曼,宋佳润,曲文涛,杨红卫.基于MATLAB仿真的浴缸水温控制策略分析[J].大学数学,2017,33(04):120-126.
[2]孙玉,宁一凡,高丹丹,斯琴.基于热传导方程的浴缸水温恒定模型[J].内蒙古民族大学学报(自然科学版),2017,32(03):201-204.
论文作者:张成成,韩烁,张震,史涛
论文发表刊物:《电力设备》2018年第26期
论文发表时间:2019/1/16
标签:浴缸论文; 能量论文; 模型论文; 水温论文; 温度论文; 热量论文; 的人论文; 《电力设备》2018年第26期论文;