苏州工业园区青剑湖学校
摘要:概念是人脑对客观事物本质属性的一种反映形式,是人们在长期实践活动中智慧的结晶,也是整个教学过程所积累的主要知识点,初中数学中有大量的概念,是数学基础知识的重要部分,概念的教学在初中数学中占有很大的比重,本文从五个方面,简要探讨在新课标下如何进行初中数学概念教学。
中国论关键词:概念教学 感悟
新课程标准下的教材,一改以往老教材中严密的知识结构体系和严谨的数学概念体系,对概念的描述、概括不再特别注重其表达形式,而是注重新课标强调的“关注概念的实际背景与形成过程,帮助学生克服机械记忆的学习方式”。在这个背景下,新教材带给数学概念教学许多新的理念和教学方式。在日常的数学概念教学中,笔者认为应该注意以下几个要点。数学概念是学好数学最基本的要素,数学概念的建立是解决数学问题的前提,学生在运用数学概念进行推理、判断过程中要得出正确的结论,首先要正确地理解概念、掌握概念;我们时常可见学生的错误与"概念不清"有关的现象。如何把概念讲清、讲透、讲活,使每一个学生都能理解、应用,达到即使忘其"形"也难忘其"神"的境界,是数学教师普遍关注的课题,现结合数学概念教学的实践,谈几点自己的认识与做法。
一、让学生在生活情景中感悟概念
数学概念的形成,建立在对事物感性认识的基础上,因此,要引导学生通过观察、分析、比较,找出事物的本质特性。教学中,要充分运用直观的方法,使抽象的数学概念成为“看得见、摸得着、想得来”的东西,成为学生能亲身体验的东西;这样既可以帮助学生理解概念,又有利于激发学生的学习兴趣。
有些数学概念源于现实生活,是从生产、生活实践中抽象出来的,对于这些概念教学要通过一些感性材料,创设归纳、抽象的情景,引导学生提炼数学概念的本质属性。比如,数轴概念的教学,观察生活中杆秤的特点。拿根杆秤称物体,移动秤砣使秤杆平衡,秤杆上的对应星点表示的数字即为所称物体的重量;显然秤砣越往左移,所称的物体越重。进一步引导学生抽象出本质属性:(1)度量的起点;(2)度量的单位;(3)增减的方向。
我们能否用一个更加简单形象的图示方法来捕述杆秤呢?由此启发学生用直线上的点表示数,从而引进“数轴”的概念。这样做符合学生的认知规律,给学生留下深刻的印象,同时也有助于激发学生的学习兴趣,使学生积极参与到教学活动中来,有利于学生思维能力的培养和素质的提高。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示;测量和计算有时不能得到整数的结果,这就用像 , 等这样的分数。②观察两个温度计,零上3度,记作+3°,零下3度,记作-3°,这里出现了一种新的数――负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。
期刊文章分类查询,尽在期刊图书馆
三、深入剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延,也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如,“一般地,式子(a≥0)叫做二次根式”这是一个描述性的概念,式子(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”――说明变量的存在性;②“在某个变化过程中有两个变量x和y”――说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”――说明变量x的取值是有范围限制的,即允许值范围;④“y有唯一确定的值和它对应”――说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。
概念教学至关重要,概念教学的模式多种多样,数学概念教学的最终目的不仅仅是使学生掌握概念本身,而应努力通过揭示概念的形成、发展和应用的过程,培养学生的辩证唯物主义观念,完善学生的认知结构,发展学生的思维能力。若在课堂教学中只要求学生记住它的定义,然后反复练习,这样做,虽然学生也能理解这部分知识,但实际上是降低了对能力的要求。所以在教学过程中还应特别注意对例题和教学方法等方面的选择和改进。例如:应尽可能地使用“启研法”,即在教师的主导作用下,将“启”(启导)、“读”(阅读)、“研”(研究)、“讲”(精讲)、“练”(练习),有机地结合起来并贯穿于课堂教学之中,启发诱导学生去领会概念,运用概念,从而使他们学到研究数学问题的思想和方法。这样做,有利于提高学生的数学素质。
四、适度淡化形式,注重实质
有些数学概念,在教学中应注重实质,淡化形式,如分式的概念,只要给出描述性的定义,如“像……这样的式子叫做分式”,这样的概念,属于“了解”的级别,不宜纠缠于辨别一些什么样的式子是不是分式,把精力放在分析如分式什么情况下有意义,分式的运算上。又如“最简根式”的概念学习时,不必要求学生准确表述“被开方数中不含有分母且不含有开方开的尽的因数或因式的根式叫做最简单根式”,只要学生能识别一个二次根式是否是最简二次根式就可以了。
五、在运用中深化以概念的理解
有一些数学概念,开始时不必要求学生对描述性的解释有多深刻的把握,可以让学生在后继的运用中逐渐加深理解。如对“函数”这一概念的理解,开始时学生的理解是肤浅的,在学习了正比例函数、一次函数、二次函数、反比例函数等各种具体的函数后,便逐渐加深了对这一概念的理解,并且在后继学习中不断深化,从初中阶段从对应的描述性定义,到高中阶段的集合结合映射的描述性定义。这也体现了知识的螺旋式上升的原则。
要做好数学概念的教学,使学生透彻地牢固地掌握数学概念是提高数学教学质量的关键所在.作为一个数学教师首先应该认识到数学概念教学同加强数学基础知识教学,培养学生运用数学知识解决实际问题的能力,以及发展学生逻辑思维和空间想象能力的关系,在思想上重视它,这样使我们在教学时会目的明确,方法对头,既不会造成为概念而教学,也不会在数学教学时顾此失彼。
参考文献:
[1]李祖选.初中数学概念教学探微[J].宁波教育学院学报,2006,(6).
[2]黄惠娟.在概念教学中培养学生的探究意识[J].教学研究,2005,(4).
论文作者:石春秀
论文发表刊物:《语言文字学》2016年7月
论文发表时间:2016/10/12
标签:概念论文; 数学论文; 学生论文; 根式论文; 函数论文; 抽象论文; 过程论文; 《语言文字学》2016年7月论文;