电容式电压互感器的发展与故障分析论文_李军立,郑建华,罗瑞

(国网南阳供电公司 河南省南阳市 47300)

摘 要:随着我国电力事业的蓬勃发展,电力设备国产化进程的加大,电力系统对电力设备的要求也越来越严格。电容式电压互感器由于其运行可靠性高、介损小、造价低等一系列优点,广泛应用于电力系统中的电压、功率测量、继电保护和载波通讯。在我国华中地区,500kV系统为其主要的超高压系统。近年来,华中地区将开发500kV电力系统作为“十五”国家重点项目进行。500kV电力系统的创建必将带动系统对220kV用电容式电压互感器的需求。本文对于500kV电力系统的电容式电压互感器进行了阐述,介绍了事故关键问题的解决以及解决方法。

关键词:电容式电压互感器; 发展 ;技术特点; 二次失压;

1、前言

2015年,某局继电保护人员在对220kV新安装设备电源自动投入装置进行投运前检查时,发现备用电源侧无电压。因为这个电压是通过安装在备用电源线路侧的电容式电压互感器而引入的,于是继电保护和高压试验人员对CVT及其二次回路进行了一系列的检查试验,结果发现该CVT电磁单元烧损的严重故障,检修人员及时对其进行了更换,避免了一起设备事故的发生。

/ 2、电容式电压互感器的发展与故障分析

这台电容式电压互感器的型号是是2014年12月份才投入运行时,高压试验人员先测试了CVT的高压电容C1、中压电容C2以及总电容量,再试验了介质损耗,与设备出厂时和投运前的试验数据相比变化不大,说明电容分压器单元没有问题。

2.1为查清CVT的电磁单元有什么问题,试验人员先用万用表的电阻档测中压互感器的一次线圈电阻,其阻值为500多欧姆;然后在中压互感器的一次线圈上加交流电压,测二次电压的值,当一次电压升高时二次电压不仅不升反而下降;最后在中压互感器二次侧的da、dn线圈上加交流电压,用静电电压表测一次电压的值,电压均为零。根据这些试验情况和数据,试验人员初步判断电磁单元内部可能有短路。

3、CVT解体检查和故障原因分析

3.1专业技术人员和CVT厂家人员一起,对拆下的CVT进行了解体检查。当工作人员用扳手拧松电磁单元油箱法兰的几颗螺栓后,刺鼻和刺眼的油气从法兰缝隙朝外喷出,明显感到内部聚有很大压力。拆完一圈螺栓,用天车将电容器单元稍微吊离下节油箱,在取下中间电压端子A′和中压电容C2下端接线端子δ与电磁单元之间的引线时,发现固定中压电容C2下端接线端子δ的4只螺栓少了一只,因油箱中的油较满,也看不到这只螺栓掉到了哪里。工作人员用器具把油箱中的油慢慢抽出,当油面低于中压互感器的接线板时,人们终于看清了,掉下的螺栓落在了中压互感器一次绕组抽头的几个接线柱中间。在螺栓与接线柱接触的地方,发现有轻微的短路熔焊痕迹。油箱中的油已经失去了其应有的淡黄色,而变成了象酱油一样的黑褐色。在往外抽油的过程中,油中不断有气体逸出,油中泛起黑褐色的泡沫。当油被全部抽完后,人们看到了中压互感器的铁芯已经烧得没有了硅钢片特有的光泽,最外层的硅钢片已被烧变了形,中间鼓起来了。中压互感器绕组外面包的白布带已被烧成黑炭质,用手一扣就有渣子掉下来。油箱内壁沾满了含有炭质的油渍,用手一摸全是黑。为了拆掉补偿电抗器的引线,工作人员将出线端子盒上方的盖板拆开,发现这个盖板因内部压力太大已经鼓肚。至此,CVT的故障已经十分清楚,那就是中压互感器一次线圈烧损。

3.2既是这样,我们还是让油务人员取了油样,进行了油色谱分析。分析结果:除乙炔为零值外,总烃和氢气均大大超过注意值;经计算三比值为020,故障类型是低温过热(150~300℃),这进一步印证了故障的情况。

根据对CVT解体检查所发现的情况,技术人员和设备厂家人员一致认为,造成中间单元烧损的原因是,固定中压电容C2下端的一只螺栓掉入中压互感器一次绕组的接线柱丛中,使一次绕组部分线匝被短接,其交流阻抗减小,一次电流超过额定值,造成一次绕组烧毁。但螺栓造成的短路不是太严重,或者说被螺栓短接的匝数并不多,因为如果短路严重,短路电流所产生的热将在短时间内使变压器油分解出大量气体,这有可能造成下节油箱爆炸,或使高压电容C1两端所加电压太高而使其爆炸。至于这只螺栓为什么会在运行中脱落,经过分析认为,这是该设备在安装时未紧固好,工序间检查时也未发现。设备运行后,它位于中压互感器的交变电磁场中,在交变电磁场的作用下不断振动、转动和向下移位,以至于最后脱落,造成中间互感器一次绕组短路。所幸的是,在这次对继电保护自动装置检验中,发现了这个问题,并及时进行了更换,防止了更为严重的设备事故发生。

4、经验教训

电容式电压互感器在电力系统中的应用非常广泛,但象这次因螺栓脱落而造成故障的情况却是十分罕见的。这只CVT幸亏发现及时,才未酿成更大的设备事故。因此,作为电力设备的生产厂家,安装人员一定要加强责任心,质检人员一定要把好验收关,以确保每台产品的质量。

2016年某500kV变电站,500kV线路A相电容式电压互感器在电网正常运行条件下,发生故障,与之相关的保护误发信号,3个二次电压线圈全部无电压输出。该电容式电压互感器型号为TYD500/ -0.005H,1994年7月产品, 该电容式电压互感器由4节瓷套外壳的电容分压器和安装在下部油箱的电磁单元两部分构成,其中C11,C12、C13分别安装在1~3节瓷套内,C14和分压电容C2共装在第4节瓷套内;其电容量分别为:C11=19499pF,C12=19703 pF,C13=19868 pF,C14和C2串联后的电容量为19636 pF(其中C14=23856 pF,C2=116920 pF),油箱电磁单元中变压器的一次端A在第4节瓷套内,连接在C14和C2之间,3个二次绕组的接线端子al xl,a2 x2,afxf通过接线盒引出,X端在出线盒接地。

5、电气试验分析原因

故障发生后,在运行状态下,电气试验人员分别直接对3个二次电压线圈进行输出电压测量,确认电压输出为零(正常状态分别为和100V),现场检查电容式电压互感器外观正常也无异音现象。

图3

由其工作原理图3可知,分压电容器C2和油箱电磁单元正常状态下,承受的额定电压为13kV,而整台电容式电压互感器承受的电压为500/KV;如电磁单元部分对地短接,不承受13kV的电压,二次将失去电压输出,对设备整相承受电压的能力影响较小。而假设电容分压器C11,C12、C13,C14的其中之一存在缺陷,该节将承受较低的电压,其它节承受的电压升高,会造成整台设备运行异常,有二次电压输出但不是正常值,设备会有异音发出或损坏。如果电磁单元的变压器一次端断线,电压将不能正常传递,二次失去电压输出;若C2的电容量变大,二次电压输出且会降低。由此可见,在电容式电压互感器能够承受系统正常电压的前提下,结合其结构特点,可以确定二次失去电压的原因与电容量的变化无关,第1~3节瓷套和第4节瓷套中的C14电容本身正常,故障原因可能为:

(1)电磁单元变压器一次引线断线或接地。

(2)分压电容器C2短路。

(3)和电磁单元中变压器并联的氧化锌避雷器击穿导通。

(4)油箱电磁单元烧坏、进水受潮等其它故障。

随后对设备停电,通过电气试验对故障原因进一步具体分析。

由于设备高大,引线沉重,周围设备全部带电,拆除引线的难度和危险性都比较大,故本次试验采用不拆头的电气试验方法。

试验方案1:

在电容式电压互感器上端H点接地状态下,从二次线圈al xl反向加压,在第4节瓷套上端B处直接测量一次电压(可用测量变压器T,电容式分压器或周围停电的其它相电容式电压互感器),试验接线见图4。

图4中C11,C12,C13串联后的电容量Cla=1/(1/C11+1/C12+1/C13)=6563pF若在二次线圈al xl上,加Ua1xl=10V的电压,在电容式电压互感器正常状态下,B点测的电压的理论值UB,而原理图中:

即B点应测量到1.77kV的电压。

但在实际加压过程中,电磁单元变压器二次侧电流急剧上升,试验变压器过流掉闸,电容式电压互感器的B点测不到电压,进一步说明分压电容器C2或油箱电磁单元部分短接,电压不能反向传递。

试验方案2

从B点加压进行电容量和介质损失角的测量,考虑现场的电磁干扰严重,采取故障相和非故障相比较法,由于XL>>Xc故可忽略电磁单元变压器电感影响,试验接线见图5。

上述接线在无故障状态下,B和E两点间的电容量为C11、C12、C13串联和C2、C14串联再并联的电容量;理论计算值C=Cla+1/(1/C2+1/C14)=26199pF。若A点接地,B和E两点间的电容量为C11、C12、C13串联和C14并联的电容量;理论计算值C*=Cla+C14=30419pF,显然C*应该大于C;现场实际测量的结果为:

故障相:C*=30904 pF,介质损失角小于0.1

非故障相:C=26289 pF,介质损失角小于0.1

同样C*大于C,得出和理论计算值相同的结果,而介质损失角正常,进一步证实了电容式电压互感器无二次电压输出,与分压器电容量的变化及各类断线无关,而是由电磁单元变压器一次接地引起。

/6、解体检查与故障处理:

根据试验分析的结论和综合判断情况,在怀疑电磁单元变压器一次接地可能由并接的氧化锌避雷器击穿导通引起的同时,准备好氧化锌避雷器和一些常规绝缘材料,将电容式电压互感器第4节瓷套和底座油箱单元解体检查;发现电磁单元变压器至分压电容器之间的联结线因过长而与箱壳碰接,并有明显的烧伤放电痕迹,分别测量电磁单元变压器和氧化锌避雷器的绝缘电阻均在10GΩ以上。随后将该联结线缩短,并用绝缘材料包扎固定,回装完毕后,再用试验方案2测量其电容量和介质损失角,C=26371pF,介质损失角小于0.1,测量结果与相邻非故障相及理论计算值基本一致,投入运行后运行正常,该故障点消除。

总结如下:

由于电容式电压互感器本身的结构特点,现行产品电磁单元变压器的一次联结点在瓷套内部,不可拆卸,在预防性试验和故障分析时,无法直接对电磁单元的特性和绝缘状态进行分析检测,在对产品有怀疑时,可参照上述试验方案对比分析。

建议制造厂改变设计,将电磁单元变压器的一次联结点A点通过小套管引出(目前已有部分产品采用),便于用户直接测量电磁单元的绝缘电阻、介质损失角和电容量等参数。

电磁单元变压器的接地联结点X点是引至二次接线盒接地的,可在试验时打开接地点,直接测量电磁单元变压器、氧化锌避雷器和电容分压器C2的绝缘性能,同时X点引出后,运行单位可通过X点进行在线或带电测量电容式电压互感器运行过程中的容性泄漏电流。

结束语

安装在线路上的电容式电压互感器由于停电检修困难,故障后的影响面广,解体检查修复的周期相对较长,建议制造厂加强最下节瓷套和油箱电磁单元电气联结部分的绝缘强度,严格设计工艺,保持各联结线对地及器件之间的距离,必要时由裸导线更换为绝缘导线(或进行绝缘包扎),严格出厂试验和外协器件的质量把关,确实有效地防止类似故障的发生。

参考文献:

[1]刘永;陈昊;熊斌;;CVT二次侧两点接地的事故分析[J];高压电器;2012年04期

[2]陈敏维;李棣;季征南;张孔林;江修波;张少涵;;一起电容式电压互感器绝缘在线监测案例分析[J];高压电器;2012年05期

[3]张曦;周文华;吴悦怡;徐青龙;;电压测量值在电容式电压互感器故障检测中的应用[J];江苏电机工程;2011年03期

论文作者:李军立,郑建华,罗瑞

论文发表刊物:《电力设备》2017年第23期

论文发表时间:2017/11/27

标签:;  ;  ;  ;  ;  ;  ;  ;  

电容式电压互感器的发展与故障分析论文_李军立,郑建华,罗瑞
下载Doc文档

猜你喜欢