浅谈输电线路防风偏的措施论文_梁益伟,尹倩

(云南电网有限责任公司曲靖供电局 云南省曲靖市 655000)

摘要:电力系统的安全稳定运行会受天气原因而产生严重的影响,输电线路一般都处于户外,所以很容易发生风偏故障的问题,对输电线路的稳定性有严重的影响。本文从输电线路产生风偏的原因、规律和应对措施进行了探讨,希望能给业界同行提供参考。

关键词:电力系统;输电线路;防风偏

随着人们生活水平的不断提高,人们对电能的需求也越来越高,这些现实情况促进着电力行业的快速发展,也加速了电网的形成,同时国家电网也更加注重向超高压的方向发展,超高压输电线能够实现大容量以及远距离传输,并且能够降低传输的成本,减少线路的损耗,是经济效益非常显著的运输方式。但是由于我国疆土辽阔,地理环境特殊,使得超高压输电线路的建设以及维护存在诸多困难,尤其是大风天气输电线路的影响非常显著。

1风偏概述

风偏是这样一种现象,其中架空输电线路被风移动并且到塔身的距离变得小于最小安全距离,这可能导致线路放电跳闸发生故障。如果三相线移位的方向相同,并且每相的线之间的相对距离基本不变,从而没有相间放电的事故发生。如果导线由于除冰和风而在不同时间被冰覆盖,则线路的位移导致被归类为线路跳动。

2风偏故障分析

自从1981年我国首次建成500千伏输电线路后,仅仅耗时六年,就已经建成了5000多公里的500千伏超高压输电线路,到今天已经逐步形成了以500千伏输电为主的超高压电力系统。但是由于我国地形众多,超高压输电线路在建设过程中遇到了许多问题,比如在微地形区域内,输电线路受到飑线风的影响,容易发生风偏,造成绝缘子串逐渐倾斜靠近杆塔,这样会降低杆塔与导线之间的距离,在放电的时候距离过低导致闪路现象的出现,从而对超高压输电线路的安全构成威胁,同时也影响了电力系统的正常运行。除了飑线风的出现会造成风偏故障,在雷雨或者冰雹发生时,空气潮湿也会降低绝缘的强度,这个时候如果再遇上强风,雨水形成的水线与输电线路的放电路径相同,就会带来危险。

并且当输电线路的杆塔档距在三百米到四百米之间的时候,最容易发生风偏现象;如果塔头的尺寸相对较小,在遇到强风的时候会出现绝缘子串风偏,进而输电线路会自动跳闸以保护线路的安全。同时也有研究发现,随着电线杆杆塔高度的逐渐增加,接受到的风力就会随之增大,绝缘子串风偏发生的几率也就因此而增加。

3输电线路风偏发生的规律和特点

(1)风偏多发生在恶劣气象条件下

多年来对每个区域输电线路的风偏事故进行调查分析,当输电线路出现风偏故障时,这个区域多出现强风,而且多数情况下有强降雨、冰雹等局部对流强烈的天气。一方面,在强风作用下,导线相对于塔体具有恒定的位移和偏转,导致空气放电间隙会变小。另外,雨和冰雹降低了导线和塔之间的工频放电的电压,并且两者一起作用,它导致线路出现风偏故障。

(2)放电烧痕明显,放电路径清晰

从放电路线的角度来看,有三种主要形式的风偏:导线放电到塔架构件,导线之间的放电,以及导线放电到周围物体。它们有一个共同的特点就是,在发生风偏并且放电路径清晰后,导线或导线侧配件上的烧痕显而易见。当导线放电到塔架构件时,主放电点主要位于钉子的突出位置和角钢的末端,当导线放电到周围物体时,导线上放电痕迹的长度不低于1m。

(3)风偏重合闸成功率低。

因为风偏跳闸通常在强风等恶劣的天气中发生,强风的持续时间通常会超过重合闸的时间,因此当重合闸启动时,放电的间隙依旧很小。而且当重新闭合被激活时,系统中会出现一定的幅度的操作过电压,会使得间隙再次发生放电。所以,如果在线路上发生风引起的跳闸,则重合闸的成功率通常都比较低,这对电源的可靠性具有严重影响。统计结果显示,大部分的输电线路出现风偏故障都会使得输电线路出现计划之外的停止运行。

4防风偏措施

(1)加装防风拉线

防风拉线主要设置绝缘材料以及拉线,并固定悬挂绝缘子串和导线,以避免在恶劣天气条件下对杆塔发生放电。

图1防风拉线示意图

在导线的逆风侧,使用一种复合绝缘材料来悬挂导线,并且通过电缆固定支架的类型以固定支架或电缆的底座。为了防止强风,下拉线给铁塔横担施加过大的下拉力,导致横臂变形,线路复合绝缘子的最大摆角控制在30~50°的范围内,拉线下端较轻的重量用于控制拉线张力。在没有风的环境下,拉线由于重量而保持垂直的状态,并且在最大风偏的条件下,电缆的最大行程受到滑道终端的限制。

(2)氟硅橡胶导线护套

氟硅橡胶是一种新型的有机合成材料,有着较高的性能,有着优异的电学和物理化学性能,对长期耐电场和耐臭氧性特别有效,并具有自然环境中材料的长期机电性能。在绝缘子串末端的导线安装具有一定厚度的氟硅橡胶护套(风偏导体保护套)是抑制风偏放电的有效方法。

图2防风偏导线护套的挂网效果图

(3)采用防风偏绝缘子

强风是绝缘子裙边损坏的关键外部原因。在风速和频率的影响下,开口处存在偏压变形和周期性振动。周期应力集中发生在根部护套和芯棒的护套的交叉处,导致绝缘体中的硅橡胶材料的应力疲劳,最初的裂缝将出现,最终成为一个伞裙破损。由于绝缘子的结构,防风偏绝缘子的部分绝缘体目前已经减小了绝缘子的风载荷,减少了自身的风偏,改善了绝缘子末端的接头,直接固定式连接到杆塔横担,减少绝缘子风偏,确保与塔身的气隙。

(4)防风偏绝缘拉索

防风部分绝缘拉索通过将杆体和杆体的两个端部串联连接而形成。杆体包括杆里面的内杆芯和外伞裙,伞裙是硅橡胶复合材料。

按照塔型的差异,防风部分绝缘拉索设计有弹性和刚性,主要区别在于棒芯是硬质环氧玻璃纤维棒还是柔性高强度尼龙材料。另外,可以使用长度能够调节的绝缘拉索来满足不同的安装距离要求。绝缘拉索安装在铁塔的主体上,当悬垂串受到强风的影响被摆向塔身时,它会被绝缘拉索挡住,从而保证导线与铁塔之间的安全距离。

结语

近年来,电网在风偏防范措施的理论研究以及实践等方面取得了丰硕的成果。不断出现不同类型的防风偏技术,线路风偏故障的发生日益减少,并且电网的可靠性得到了极大地提高。我们提交了各种技术思路来抑制线路的风偏,但防止风对输电线路的影响不能只以单一方式进行,在实际工作中,它通常是一种多方面、综合控制措施,才可以有效防止事故的发生。

参考文献

[1]许靖,何均衡,张林峰.浅谈220kV输电线路风偏故障及防风偏改造措施[J].通讯世界,2017(9):167~168.

[2]韩宏亮.超高压输电线路风偏故障分析与防风偏措施探讨[J].山东工业技术,2014(3):210.

论文作者:梁益伟,尹倩

论文发表刊物:《电力设备》2019年第4期

论文发表时间:2019/7/8

标签:;  ;  ;  ;  ;  ;  ;  ;  

浅谈输电线路防风偏的措施论文_梁益伟,尹倩
下载Doc文档

猜你喜欢