湖南省邵阳市邵东县牛马司镇第二完全小学
摘要:思维能力是实现学生发展的内在动力,也是发展智力的有效保证。因此,在小学数学课堂教学中要充分挖掘教材中的互逆因素,积极培养的逆向思维能力,加强学生的方向思维教学,全面提高学生解决问题的能力和综合素质。
关键词:作用 方法捷径
引言
培养学生的逆向思维能力,不仅可以帮助学生接触更多的新知识,还能打破传统思维的束缚,加强学生全面思考问题的能力,并在思考过程中实现求同存异。通过逆向思维的培养,学生懂得从不同层面去分析问题,从整体上解决问题,并学会用不同的方式来学习知识,为今后的学习拓展出一片新的空间,在学习过程中得到更大的收获。
1逆向思维能力的培养
小学数学作为一门逻辑性极强的学科,其本质是“思维过程”,正向思维有时会制约思维空间的拓展。在数学思考中,学生往往是“拿来主义”,只会用结果,不会“变”结果,对某些显而易见的逆向问题无从下手。
逆向思维是指相对于习惯思维(即正向思维)的另一种思维方式,其基本特点是:从已有思路的反方向去思考问题、分析问题。具体表现为逆用定义、定理、公式、法则,逆向进行推理,从反方向形成新结论,有利于克服思维定势的保守性。一般情况下,学生的正向思维能力比逆向思维强。一些问题或错误的出现,固然有学生理解不到位的因素,但更主要的是反映学生的逆向思维能力不强。
⑴运用反证法,培养逆向思维能力
反证法是通过命题给数学提出一个问题,要知道它是对是错,只需要找出满足这个命题的条件即可,就是找出使答案不成立的例子,就足以否定这个命题,而这样的例子通常是反例子。这种方法可以加深学生对问题的认识,深入理解所学的内容,同时还能纠正常见错误,这是培养学生逆向思维的重要手段和方式。这种反证法让学生对某一问题豁然明白,以最深入的方式了解其不成立的真正原因,锻炼了学生的主观思维能力和逆向思维能力。
期刊文章分类查询,尽在期刊图书馆
⑵运用分析法,培养逆向思维能力
很多数学题目都要求我们从条件出发,找到其必要条件,并得出最后结论。而逆向思维就是从问题的结论出发,逐步追溯充分条件,指导追溯到问题提出的条件为止,这就是分析法。分析法对学生逆向思维的培养有很积极的作用,例如,将100个球放成一排,从1起查数,凡是奇数球就将其拿开,把留下的再从1起数,一样,再将奇数球拿开,这样反复下去,直到最后剩下一个球,问这个球是第一次查数时为多少?分析:如果根据第一轮的程序走,第一轮数后划掉:第二轮数后又划掉,这样下去,会因为涉及的数字太多而找出混乱,现在我们反过来是思考,最后被留下的小球在倒数第1轮必数2,倒数第2轮必数4,在倒数第3轮必数8,……。于是,倒推过去此球是16,32,64,而第一轮数是64。
⑶逆用公式
小学数学中的公式主要是求周长、面积、体积等。公式主要是对解题起到一个便捷作用,它是一个规律,数学公式都是双向性的,所以,在正向使用公式时,还应加强其逆向使用,这样才能加强学生对公式的使用,做到灵活的运用公式,还可以培养学生的双向思维能力。例如,学生在学习三角公式过程中,我提出以下练习题:一块三角形物体的面积是90平方厘米,高10平方厘米,那么这块三角形的底边长是多少厘米?学生在思考后,运用三角形的面积=底×高÷2的公式,逆推出三角形的底=面积×2÷高,最后得出90×2÷10=18(厘米)的答案,这就是对公式的灵活运用。
⑷倒推练习
倒推法(还原法)是小学数学教学中一种很重要的方法,通过题目说阐述事情的最后结果出发,经过对已知条件的倒推,追根究底,直到问题解决。倒推法的训练,可以将复杂的问题简单化,促进学生逆向思维的发展。
2总结
在小学数学教学中,老师应有意识的培养学生的逆向思维,并引导学生开展逆向思维,这样不仅能加深学生对问题的认识,还能够运用逆向思维,全范围的解决数学问题,达到学以致用的目的。归源课堂,加强常规解题法的逆用 一是概念、定义的逆用,培养学生逆向思维能力。在教学过程中,学生对于概念、定义倒背如流,但要注意引导启发学生逆向思考,从而加深对概念的理解。如在乘法概念教学中,把3+3+3+3+2改写成乘法算式,通过让学生逆运用乘法概念,判断如何得到“几个相同加数”,再转变成乘法算式,冲破乘法概念狭隘化的局面。二是公式、法则的逆用,提高学生的逆向思维能力。数学中的公式很多,但学生大多只会依据“从左往右”的惯性思维解决问题。此时,在记忆公式时要强调、强化逆向追源。三是应用题中的逆向思维训练。一般而言,应用题都是通过已知条件解决问题,但有些时候却因为条件较复杂,很难做出正确的判断,导致做题失误。如例题:“某校在植树节当天,买了两种树苗,分别是梧桐和银杏,已知银杏比梧桐多56棵,如果将梧桐先种掉4棵,这时银杏的棵数是梧桐的4倍。求两种树苗原来买了多少棵?”此题中,如果通过正向思维,定然是无从下手的,但如果能够理清数量间的运算关系,从后往前推,必要时借助线段图,那么问题就会迎刃而解。第一步,找结果:“银杏的棵数是梧桐的4倍”,找到两种树苗的倍数关系,得到两数的倍数差,即3。第二步,逆推过程:“梧桐种掉4棵”,需要加4;“银杏比梧桐多56棵”指出倍数差3所对应的数量差是60。最后,运用“数量差÷倍数差=1倍数”解决问题。通过逆向思维方式往往能把复杂问题简单化,很多难题也迎刃而解。
参考文献
[1]杜忠佩.浅述数学教学中创新性思维培养[J].数学爱好者(教育学术),2008(2)
[2]范彦方.在数学教学中创造性思维能力的培养[J].科技资讯,2010(2)
论文作者:石季春
论文发表刊物:《成长读本》2018年9月总第34期
论文发表时间:2018/9/26
标签:思维论文; 学生论文; 思维能力论文; 公式论文; 梧桐论文; 角形论文; 乘法论文; 《成长读本》2018年9月总第34期论文;