风力发电并网技术及电能质量控制措施论文_宋健

风力发电并网技术及电能质量控制措施论文_宋健

(国华瑞丰(沾化)风力发电有限公司 山东省 256800)

摘要:风电并网技术发展是未来电力生产的主要技术模式,相关的技术应用也将不断趋于完善,在开展风电并网技术应用中,相关部门要进一步提升风电并网技术,实现机组优化,解决提出问题,并不断优化管理,提升设备质量,促进整体风电电能质量提升。

关键词:风力发电并网技术;电能质量;控制措施

1风力发电并网技术

风力发电并网是完成风力发电到电能供应的必要过程,是实现电能输出的必要环节,并网技术的关键是要确保风力发电机组输出电力能源的电压和被接入电网的电压在幅值、相位、频率等方面保持一致,能够保证风力发电并网实施后,整体电能供应的稳定性。

1.1同步并网技术

同步发电机机组与风力发电机组保持相同步调,是风力发电并网技术实现的最佳效果。对于风力发电来讲,整个过程并不稳定,受风力、风速、风向等因素影响较大,因此发电转子也会产生较大幅度的摇摆,使得风电并网调速难以满足同步发电机的精度,有非常大的可能会出现失步状况。怎样才能够实现和推广风力发电的同步并网一直都是技术研究要点,目前已经取得了初步效果,可以为风力发电与发电运营提供一定支持。

1.2异步并网技术

异步发电动力组和风力发电动力组两者先进行结合然后保持相同步调运转,则为异步并网技术,与同步并网技术相比,受限的可能性极大程度上地降低,无需风力发电并网调速精准做到与同步发电机精度一致,只需要发电转子运转时风力发电并网调速异步发电机的转动转速保持一定程度的协调一致即可。风力电机组搭配使用的异步发电机方式,可避免整个系统设置复杂的控制装置,并且在并网后,也不必担心产生无振荡或者失步问题,整体运行状态相对稳定。但是就实际应用效果来看,电力发电异步并网技术还存在一定缺陷,部分情况下在并网后,会因为冲击电流过大、电压降低等因素干扰,而导致风力发电系统异常,尤其是不稳定系统频率值降低过大,会导致异步发电机的电流急剧增大,造成系统运行过载,甚至整个瘫痪,生产安全风险增大,因此想要选择此种并网方式,还需要提前做好相关准备工作,采取一定措施来维持异步风力发电机组的稳定运行状态。

2风电并网运转运行实验

2.1动态无功抵偿设备公用特性测试实验

对风电并网运转方式进行实验,动态无功抵偿设备功用特性测试就是其中之一,主要目的就是确定电容抵偿投切的一系列步骤以及操作是否符合相关标准。整个实验操作非常简单,要求在运转机组进行并网的过程中,对发电机的输出功率进行调整,同时还需要改变机组的负载状态。并且,在实际操作中为了降低各项因素对实验结果可靠性的干扰,应尽量保证在尽量差工况以及风速不稳定的发电状态下来进行实验,可最大程度地保证实验结果的准确性。

2.2风电场电能质量测试实验

在进行风电场电能质量测试实验前,应确定风电场风机处于停运状态下,并对所有并网点进行一次全面检测,通过此项操作来验证确定各次谐波电压的安稳度以及电压总谐波是否正常。假如风电场处于正常的运转状态,则应对各功率区间、谐波电压来进行测试,由此便可来判断风电场谐波电流是否符合相关标准。

3风电并网对电网质量的影响

3.1谐波影响

风力发电并网过程中会产生一系列谐波,而对电网整体运行状态产生影响,主要可以从两个方面来进行分析。第一,并网时涉及到的逆变器形成的谐波。第二,接通风力电源以后,运行时也有可能会产生谐波。谐波被引入电网中,会直接影响整个结构的电能质量。另外,现在风力发电并网常用的为软并网技术,整个并网过程会产生较大冲击电流,如果切出风速小于外界风速,风机便会脱离额定处理状态,同样也会对整个电网电能质量产生影响。

3.2电压波与闪变

风电为一种清洁型能源,但是因为近年来风电容量不断增加,并网时很容易会对整个电网电压造成影响,产生电压波动与闪变。如果风力发电并网时,所选连接位置相距配电变压器过小,风电接入电网后产生的电压闪变只会造成比较小的影响,但是此种接入方式会对电流产生较大影响,馈线附近的电压会出现大幅度的波动,进而会造成发电的用电设备受损,导致风力发电无法正常进行。

期刊文章分类查询,尽在期刊图书馆另外,接入风力发电后电网电压还会增大,尤其是现在风力发电应用最多的是异步电机,发电机处于正常运行状态下,构建旋转磁场需要消耗大量的无功功率,而功率分布方式的变化直接影响着电网电压,并网后会消耗掉一部分无功功率,进而会使得电网线路上的压降增大。

4风力发电并网电能质量控制的有效对策

4.1做好谐波抑制措施

在进行风力发电并网中,要提升相应的电能质量控制效果,可以结合组静止无功补偿器来对于谐波危害问题进行有效抑制,这种补偿器是用多台可投切电容器、电抗器和谐波滤波装置构成的,这一设备最大的特点是反应速度非常快,对于变化无功功率能够实现实时跟踪。针对风速不稳定导致的电压变化也能够实现有效的调节,这样就能够实现有效的谐波滤除,提升整体电网的电能供应质量。增设的静止无功补偿设备还能够调节电压的起伏程度,例如因为风速变化不稳定时,使得电压大小起伏变化,以此来有效消除谐波,保证风力发电机组的运行状态不会影响到电网的电能质量。

4.2完善风电信息分析工作,强化并网管理

针对风电并网工作,要建立风电信息统计分析平台,为公司和政府提供信息服务。建立风电信息统计分析平台,形成涵盖风电规划、前期、建设、并网、运行等全过程的信息数据库,为公司及政府部门提供准确、及时、公开、透明的风电信息服务。加强风电接入系统工程管理,保证风电并网送出。按照相关要求,做好风电接入系统管理工作。对于大型风电基地项目,提前开展风电场接入系统和送出工程前期工作;对于地方核准的风电项目,强化年度计划管理。要重点加强风电并网管理,加快研究制定并网检测等配套规定,建立强制性入网认证和并网检测制度。加快风电并网检测能力建设,增加测试设备,建设测试人才队伍,适应大规模并网检测需求。通过进一步加强风电运行管理,加快风电功率预测功能建设、风电调度计划管理,加快建立风电场计划申报考核机制。

4.3提升设备可靠性,优化机组设计

对于发电业务,除了要关注设备本身的问题,更希望的是把发电厂中的风力发电机组、输电线路、SVG、变电设备等各个环节连在一起,从系统的角度来看,而对于设备厂商,比如风机,是一个相对独立、完整系统,但从我们的角度,却是整体的一环。两者之间对于可靠性管理的侧重点有相同,也有不同。无论是设备的可靠性,还是系统的可靠性,还是要从技术和管理两个层面串起来,整体考虑如何做到真正的可靠。在现有风电场投资经济模型下实现风电场的预期收益,必须使用大兆瓦、高效率、小体积、低重量、便于运输、吊装安全的风电机组,以实现风电场整体投资不增加的情况下,提升发电量,降低度电成本。同时技术路线的多样化亦可推动风电机组技术进步,还有绿色制造也是在风电发展建设中需要重点考虑的问题。

总体来看,未来风电行业的技术发力点集中在以下方面:增大风电机组的单机容量;提高叶轮的捕风能力;提高风能转换效率;提高机组及部件质量;增强机组运输、安装便捷性;增强机组环境适应性等,相关风电企业要进一步提升设备可靠性,研究机组优化的有效措施,促进整体风电机组工作效率的提升。

4.4强化故障诊断,提升电能质量

针对风电并网工作,相关企业要加强相关工作人员技术培训,提升整体风电服务质量,在培训中,以风机叶片结构、故障诊断、损伤维修及运行维护等几方面为切入点,结合公司年度无人机风机叶片巡检结果,深入探究风机叶片故障诊断技术。安排相关技术人员就严重叶片缺陷的识别、分类分级、缺陷修复建议等问题,与专家进行深入的探讨交流。对此,相关风电企业要将继续加强技术交流与业务培训,推进技术创新与应用,探索新时期无人机风机自动巡航、叶片缺陷智能识别及检测报告自动化出具等新功能,为电力生产运维提供有力的技术支撑。

结束语

风力发电技术日趋成熟,电厂容量在不断增加,虽然可以在一定程度上缓解社会生产与电力资源之间的供需矛盾,但是风电总量的增加还是对电网系统产生了一定影响。一般风力发电厂多建设在地广人稀地区,远离供电网中心区域,所需承受的冲击力比较小,在并网时就很容易导致配电网出现谐波污染与闪变问题。并且受风力发电特性影响,其不稳定性也会影响电网整体供电质量。因此还需要加强对风力发电并网技术与电能控制策略的研究。

参考文献:

[1]周利鹏.风力发电并网技术及电能质量控制措施探讨[J].科技创新导报,2018,15(36):70-71.

[2]梁佳斌.风力发电并网技术及电能质量控制对策分析[J].电工技术,2018(12):69-70.

[3]林静,蒋雷.风力发电并网技术及电能质量控制策略[J].通讯世界,2018(05):241-242.

[4]吕昶.风力发电并网技术及电能质量控制措施探讨[J].科技视界,2017(28):131+139.

论文作者:宋健

论文发表刊物:《电力设备》2019年第7期

论文发表时间:2019/9/18

标签:;  ;  ;  ;  ;  ;  ;  ;  

风力发电并网技术及电能质量控制措施论文_宋健
下载Doc文档

猜你喜欢