国网山西省电力公司怀仁县供电公司 山西省朔州市 038300
摘要:随着电力市场的竞争越来越激烈,电力企业如果像实现长远的发展,就一定要有效的提升本身的技术水平,从而使电力电气逐步向着自动化的方向发展,进而在最大程度上满足电力市场发展的需要,确保电力供应的充足性与电力应用质量。但是想要使电力电气能够有效的实现自动化,就必须从电力系统和元件技术的运用两个方面入手,这样才可以使得电力系统实现自动化的升级,进而更好的完成电力电气自动化的转变。
关键词:电力电气自动化;元件技术;运用
1电力电气自动化技术的发展
1.1电子开关控制
电力电气设备运行的主要构件就是开关,开关是一个基础性元件。电子开关的运行主要基于交流变频技术的应用原理之上的,最早出现的电子开关就是交流变频电子开关,然后在自动化技术逐渐发展的过程中,又衍生出全控制式的电子开关,现阶段,相关的人员又研究出一种新型的电子开关,该开关就是复合型电子开关,在这种开关的基础上,相关的人员成功的研制出了功率集成电路电子开展,这一电力开关在目前的电力电气设备中得到了广泛的应用。
1.2电路的发展
电力电气自动化的电力系统在实际的应用中,电路也逐渐实现了自动化,并且电路的发展从开始的低频逐渐向着高频转换。在利用普通晶闸管的过程中,主要是利用整流来实现对直流传动变换器的控制,使得交流变频传动能够与直流传送变换器之间实现交叉作业,从而构成交-直-交变频器,有效的保障了电路的应用合理性。在电力电子器件不断发展的进程中,其逐渐由一代转变为二代,PWM变换器也开始进一步的得到应用。在该变换器加大了利用率后,使得电力系统运行的功效得到了明显的提升,同时也使得电网受到的高次谐波的影响降低,保障了电网运行的安全,使得电动机在低频区域运行过程中存在的相关问题得到了良好解决,而在对PWM变换器进行深入利用的过程中,其所具有的一些弊端也逐渐暴露出来,这时候就需要针对其进行改进,这就衍生出了谐振式直流逆变器电路。
1.3其他自动化技术的发展
我国电力电气自动化系统中,除了电子开关、电路得到了有效的发展之外,其他的自动化技术也得到了有效的发展,其中就包括调速器以及变频器等。这些自动化技术的发展,是建立在科学技术发展的基础之上的,在科学技术发展的进程中,调速器以及变频器也不断的进行更替,使得电力电气自动化水平得以提高。
期刊文章分类查询,尽在期刊图书馆
2电力电气自动化系统的功能作用
电力电气自动化系统所具有的功能较为全面,相对来说,电力电气自动化系统的应用保障了电力系统在运行上的安全,实现了电力事业可以实现长远的发展。应用电力电气自动化系统,能够及时的发现电力系统中出现的各种故障问题,并积极的采取相关的措施进行解决。除此之外,如果以单元机所具有的运行特征以及电气在控制上所具有的特点来进行分析,就可以得出电力电气自动化系统在实际的应用中,所具有功能主要体现在如下几点:首先,能够实现对变组的保护,使得厂高变也能够实现良好的保障,并进一步的保障励磁变压器的运行安全。其次,可以有效的实现26k V高压厂能够针对电源实现有效的监控功能,保障厂用电压能够实现轻松的切换,保障相关装置可以有效的进行状态的监控,并能够手动来对系统进行启动。再次,可以使得高压变压器得以良好的操控,而且能够使得2台机可以进行联用。然后,220k V开关以及500k V能够在联网上实现自动化以及手动化的联合应用。最后,就是能够使得变组断路器以及隔离开关能够得到有效的操作以及控制,使得低压厂能够用相关的低压装置进行监控。
3目前我国电力电气自动化元件技术运用
3.1 变换器电路
在生产设备元件中,变换器电路是应用最为广泛的一种。电力电子产品正不改革,而电子产品器件中的变换器也应不断进行改革。过去变换器电路较为简单,主要是由晶闸管构成,在使用时变换器就会将直流电相控为整流电路,使用时会受到高次谐波的影响,但是在利用电力电气技术对元件极性更新之后,就能够有效解决以上问题,由于将新的变换器电力电气化,所以,在电流与电压之间的相位差就不再一成不变,而是会随着按压的变化而改变,相位差的余弦值在电流变化之下会逐渐提升,余弦值提升,就可以使电网不受高次谐波的影响,不存在干扰现象,所以即使电动机的转矩脉动处于较低位置,也不会影响其运作。但是若电流或电压的压力超过负荷,就会难以控制。如某工厂使用的轧钢电动机,在使用的过程之中功率较大,最大时可达到4兆瓦,在轧钢电动机进行作业时,为减少对电网的影响,通常会不断对相位差的余弦值进行调整,而无法对电流或电压进行控制,在超大功率的负荷之下,变换器就会导致电子元件不断自动关闭、自动开启,影响变换器作业。
3.2 全控型电力开关
传统的晶闸管变换器为第一代电子元件,虽然代表着我国电子设备自动化的新时代开始,但是由于经济和科技的发展,晶闸管已经不适用于现代社会。晶闸管控制器为半控型,因此,现在已经逐渐被全控型的控制器取代。GTO 变频控制器是其中应用最为广泛的一种。GTP 元件的应用也较为频繁。但是由于 GTP 元件在使用过程中的参变量不太稳定,会影响二次击穿,所以,在安全放慢没有保障,而 GTP 元件的容量又比较少,通电的能力较差,因此,这种全控型元件只能通过加大电压来实现,总体来看,GTP 元件的应用较 GTO 变频控制器不太理想。而新的电力元件与过去的变换器相比功能较好,设置全控型的电力开关,就可控制逆变器的工作频率,使其固定,所以就不会出现由于电流以及电压不稳出现的自动关闭、自动开启现象,可降低开关的损坏概率。
3.3 交流调速控制技术
现在的电力元件一般都会采用交流调速控制技术理念进行设计与假设。交流调速控制技术理念是依托于矢量控制理论,即一种非线性、高阶的多变量控制系统。其理念源于直流电动机控制,将直流电动机的控制是通过固定磁场来实现的。
例如一台直流电机模型,在它其固定部分中,安装了直流励磁,其磁极分别为 N 和 S,在其旋转轴的部分安装了电力枢纽元件(铁芯)。固定的部分与旋转部分存在缝隙。在电路部分安装上安装两个导体,分别为 A、X,将两个道题安装成电力枢纽线圈,将线圈的两端连接至如图所示的两个弧状铜片(换向片)之上。换向器固定在转轴上,换向片和中心的转轴之间是互相绝缘的。当电力枢纽开始旋转,电力枢纽的线圈就可以可以通过换向片、电刷接通外电路利用直流电机控制其的原理,并加入矢量控制原理,实现交流调速控制。而在交流调速控制的过程之中,由于较为复杂,且电流走向为综合状态,所以,旋转部分的磁链有可能会影响到旋转元件周围的同路参数。所以,交流调速控制理论在应时,就可能会出现应用结果与假设分析不符合的状况。甚至会相差甚远。因此,在使用交流调速控制理论的使用中,需要先对旋转中心周的磁链方向进行检测。
4 结语
总而言之,电力电气设备结合了先进的网络技术与信息化技术,逐步实现了自动化。在上述先进技术的应用下,电力电气设备的发展与原件技术之间的关系越发的紧密,电力电气设备的发展提升了原件技术运用效率,致使电力电气自动化的电力系统完成了整个质量的提升。但是,尽管如此,,我国的电力电气自动化发展水平仍然比不了西方发达国家,我国的电力电气自动化还有很大的发展潜力,仍需要相关的研究人员进行更深入的研究,进而推动我国的电力电气自动化尽快赶超世界水平。
参考文献
[1]李燕馨.电力电气自动化元件技术的运用[J].中国新技术新产品,2010(22).
[2]罗宇杰.浅谈电气自动化在电力系统中的应用[J].广东科技,2011(11).
论文作者:张向阳
论文发表刊物:《电力设备》2016年第13期
论文发表时间:2016/10/9
标签:变换器论文; 电力论文; 元件论文; 技术论文; 电气自动化论文; 电路论文; 电气论文; 《电力设备》2016年第13期论文;