摘要:现代城市发展水平的提升,地铁作为城市发展的重要交通工具,其施工难度比其它工程大,再加上地铁站通常位于城市人口聚集的繁华区域,周围建筑物居多,给地铁站深基坑开挖造成了很多施工困扰。以某地铁站深基坑工程为例,从地下连续墙水平位移、混凝土结构内支撑梁轴力以及钢管支撑梁轴力等施工监测进行了阐述,为判断深基坑工程的稳定性给出了依据。以便满足其安全施工要求,降低这类工程深基坑施工风险.
关键词:地铁站;深基坑;支撑梁轴力;地下连续墙;施工监测
1工程概况
某地铁站工程基坑长度为 150.2m,宽度为 29.02m,地下支护结构采用连续墙加内支撑的方法。该深基坑工程整体上呈正方形结构,基坑开挖深度都在 25m 左右,基坑南侧位于地铁站隧道正上方,开挖深度为 21.09m,北侧开挖深度为24.91m,塔楼位置开挖深度为 25.14m。深基坑正下方为该地铁线区间盾构隧道,隧道结构顶部埋深约 28m,深基坑开挖至底部后,区间盾构隧道结构顶部正上方岩层厚度约 8m。根据工程概况,深基坑开挖过程施工监测项目主要有:地下连续墙水平位移监测、基坑壁即连续墙顶部水平位移监测、混凝土结构内支撑梁轴力以及钢管支撑梁轴力测试。在施工监测过程中,借助支撑梁内力监测和基坑位移监测大体上可以判断深基坑工程的稳定性。
2 深基坑工程监测过程
2.1 基坑内外各个监测项目测点布置
基坑开挖各个监测项目测点位置设置要按照工程设计进行,同时结合基坑开挖导致的应力场以及位移场分布状况变化、施工经验,在合适的位置布设,保证监测数据能够全面反应基坑变形、受力状况以及对外部环境的影响程度。例如该工程基坑开挖分为三段,即隧道正上方、北侧、塔楼,开挖前需要在不同开挖段设置监测点,同时了解基坑受力和变形状况,及时反馈基坑稳定情况。
2.2 各个监测点基坑埋设
深基坑施工监测点埋设要根据基坑支护结构以及周围环境状况确定,具体如下:①监测点埋设要优先考虑煤气管道和大口径用水管道位置,因为这些管道都是刚性压力管,对于差异沉降十分敏感,尤其是管道接头位置最为薄弱。②根据地表沉降曲线走向,对影响较大区域的管线加密布点,也要兼顾到其他管线。③监测点间距通常在 10~15m,本工程基坑长度为 150.2m,故监测点间距可设置为 15m。通常是根据每一节管道长度进行布点,这样能全面体现出地基沉降曲线。④监测点有直接埋设和间接埋设两种。前者是借助抱箍将测点放在管线上,这种埋设方法能真实体现管线沉降和位移变化,但是实际施工比较困难,对于本工程来讲,由于城市主干道下方管线较多,所以不建议使用该方法;后者是将测点安置在管线轴线对应地表。本工程建议使用两种埋设方法结合,直接测点借助管线于地面露出位置进行设置,间接测点则根据管道轴线设置。
2.3 工程应用
(1)监测点布置。根据工程设计要求,本工程在基坑周围一共设置 8 个测斜孔和18个墙顶位移监测点,第一层设置10 根混凝土支撑的钢筋应力计,另外设置 22 根钢支撑轴力计负责应力监测。
(2)测斜监测。①8 个测斜孔监测使用测斜仪监测,测斜孔监测精度为 0.25mm/m。②8 个测斜孔管道埋设过程中,事先在现场组装完成,然后绑扎固定在钢筋笼上,严格校正导向槽方位,保证导向槽与基坑边线走向垂直或平行,导向槽与钢筋笼一同放入槽内,用混凝土浇灌。③混凝土浇灌之前,事先将管底底盖封好,用清水注满测斜管,避免测斜管在混凝土浇灌过程中浮起,也可以防止水泥砂浆流入管内。测斜管出露冠梁顶部 20cm 左右。为了保证测斜管孔口不受损坏,使用镀锌钢管将测斜管顶部 1m 左右位置套住,并焊接在钢筋笼上,用堵头密封。镀锌管、测斜管间使用水泥砂浆填塞。④基坑开挖和地铁站地下结构施工中进行测斜监测,可以实时了解地下连续墙变形状况。测斜过程中保证测试仪导轮在导槽内,轻滑至管底,待稳定后以 50cm 为间隔单位进行测读;测量到管口位置,翻转测斜仪进行复测,保证每个测斜孔测量两次,同时将测试平均值作为初始值,这样可以降低仪器测量误差。
(3)支撑梁轴力监测。支撑轴力量监测目的是了解基坑开挖以及结构施工阶段的支撑轴力状况,同时结合围护体位移监测评估支护结构安全性,钢支撑受力情况使用轴力计量测。混凝土支撑钢筋应力使用钢筋应力计量测,首先用频率计量测钢筋计频率,然后根据量测的频率标定曲线;其次将最终量测的数据转换成轴力值;最后根据钢筋计直径计算钢筋应力。
(4)地下连续墙施工监测。地下连续墙各个监测点设置在压顶梁体上,按照基坑开挖深度 3 倍距离将基准点设置在该距离范围以外的位置,围护墙体水平位移监测使用小角度法或视准线法。该深基坑工程施工监测所用到的主要监测设备和具体型号:①全站仪 1 台,型号 GTS602;②光学测量仪 1台,精密光学测量收敛仪和滑动测斜仪;③光学测量滑动测斜仪 2 台,型号为 CX- 01;④钢筋计 60 个,振弦式钢筋计。
2.4 施工监测中的监控报警值
深基坑施工监测中报警值至关重要,通常需要根据深基坑支护结构和现场环境来确定监测警戒值。一般基坑支护结构位移变化、受力状况、环境沉降位移等只要保持在警戒值允许范围内,就可以继续施工,否则需要及时调整施工方案,制定加固措施,保证基坑工程施工安全。警戒值的设置一方面需要考虑施工安全,另一方面也要考虑到施工经济性。如果警戒值设置过于严格,势必会影响施工进度;反之,警戒值设置较低也会威胁到支护结构稳定性和施工安全。通常警戒值的设置需要考虑以下几点因素:①按照基坑支护结构计算书确定监测报警值;②对于需要特殊保护的地下管线等设施,需要按照主管部门提出的设计要求设置警戒值;③严格按照周围建筑物变形承受能力合理控制警戒值标准;④满足现行的规范要求。按照上面的原则,监测频率应当根据施工进度确定,基坑开挖过程中每天监测一次,其他施工阶段每 3~5d 监测一次。如果监测结果超出预警值,要加密观测;若有危险事故征兆则需连续观测,同时要及时采取应急措施。为了保证基坑安全,要加强基坑基础监测,及时将监测数据反馈给设计人员,按照施工规范要求设置预警值,超出预警值要及时上报相关部门处理。当然除此之外,还需要考虑煤气管道变位、自来水管道变位、立柱桩差异隆沉等,具体见表 1。每次量测后都要对每个测量点进行回归分析,计算各自进度最高的回归方程,然后通过分析推算最终应力和掌控应力变化规律,根据位移变化规律来判断基坑是否稳定.
除了表 1 提到的几个监控点之外,对于该工程出现的测斜等光滑变化曲线,如果出现有比较明显的折点变动,也需要事先设置警戒值,进行报警处理。
3 结论
总的来说,地铁站工程深基坑施工监测至关重要,尤其是施工过程中的支护结构选择和监控量测,这两个环节是保证深基坑工程施工安全的关键所在,在施工过程中,必须保证各项监测数据准确,同时反馈监测结果.有利于丰富地铁站工程深基坑施工方面的实践经验,信息,为工程施工决策提供依据。
参考文献:
[1] 王筱君.浅谈基坑监控量测技术在地铁中的应用[J].科学技术创新,2018(36):95- 96.
[2] 王瑞瑞.某地铁深基坑开挖变形及稳定性分析[J].工程质量,2018,36(11):36- 40.
[3] 尹建周.地铁深基坑施工中支护结构监测方法的分析[J].智能城市,2018,4(20):118- 119.
[4] 张栋.紧邻地铁隧道深基坑支护技术及监测分析[J].中国标准化,2018(20):50- 51.
论文作者:何洪海
论文发表刊物:《基层建设》2019年第13期
论文发表时间:2019/7/22
标签:基坑论文; 工程论文; 深基坑论文; 位移论文; 钢筋论文; 结构论文; 警戒论文; 《基层建设》2019年第13期论文;