摘要:在机械结构运行过程中,疲劳破坏现象是影响机械运行的主要因素之一。疲劳破坏过程复杂多样,常发生在机械设备某些隐蔽处且易断裂、易磨损的部位,通过局部的损伤来影响整个机械结构的正常运行。因此怎样增强疲劳寿命与结构的可靠性一直是机械产品设计研究中的热点内容,也是企业提高生产质量与经济效益的关键。本文主要论述对机械结构抗疲劳的方法与分析影响结构可靠性的原因。
关键词:机械疲劳;结构可靠性;交变应力
引言
大多数机械结构中,疲劳破坏现象发生主要因为物体受到力或方向周期性变化的交变载荷作用。长期以来,机械疲劳时刻影响着企业的生产技术与质量。随着机械设备智能、精准的发展方向,通过对机械结构可靠性的分析来增加疲劳寿命,从根本上解决因疲劳破坏给结构造成的损伤,并对机械结构疲劳方面做出安全评估。
1.分析机械结构疲劳与抗疲劳
1.1机械结构疲劳的概述
疲劳是机械设备受到循环交变载荷作用下,材料局部逐渐产生永久性累积断裂、磨损、腐蚀等损伤的过程。在材料设备受到循环应变与应力不断变化的载荷作用时,应力值虽然在材料的极限强度范围内,甚至低于材料的弹性极限时,就有可能发生破坏,在这种交变载荷循环作用下材料发生的破坏,叫做机械结构的疲劳破坏。
机械结构疲劳主要因素为循环应力次数、平均应力强弱、应力值大小。在交变载荷作用下机械零件经过一定时间,因结构内部的不均匀,承受应力的多变性,导致在高应力集中区域形成细小裂纹,再由小裂纹逐步扩展至断裂。使其具有瞬时性以及对缺陷的突发性常常不易发现且易造成事故,影响生产。调查发现机械零件疲劳破坏占企业事故发生率的80%左右,应力的高低直接影响疲劳寿命的长短。通常条件下,根据静力实验来测试材料的机械性能,但是静力破坏与疲劳破坏存在本质上的区别。首先,静力破坏是在超负荷作用下一次完成,而疲劳破坏是受反复作用力很长时间才发生的破坏。其次,在交变应力小于屈服强度,甚至远小于静强度时,可能发生疲劳破坏,但却不会发生静应力破坏。最后,疲劳破坏没有明显的破坏现象,例如金属的脆性破坏不易察觉。静力破坏有明显塑性变形。所以在确定材料的弹性极限、强度极限、屈服极限等机械性能时,不能单单依靠静力实验数据,来反映材料在受到交变应力时的特性。
1.2提高抗疲劳性能的方法
1.2.1添加“维生素”
在金属零件中添加不同种类的“维生素”可以增强零件抗疲劳的性质,延长疲劳寿命。例如:在有色金属和钢材里,加入一定比例的稀土元素,可以提高金属抗疲劳的强度极限值。
1.2.2结构表面处理
因材料承受扭转、弯曲等应力大部分都集中与表层,故对金属零件表面进行电镀或涂层处理,可有效改善应力腐蚀、锈蚀现象以及零件间滑动过程中的摩擦。还可以利用辅助工具将表面打磨光滑或对零件使用前进行塑性变形,有助于提升材料强度及屈服极限值。此外表面热处理通过淬火、氰化、渗碳等措施,改善机械结构表层材料的抗疲劳强度。
1.2.3改变机构外形
在设计构件时,常采用改变外形来减小应力的集中。例如在轴与轮毂安装时,可以通过在轮毂或者轴上开减荷槽。过盈配合时,可以增大配合轴的直径。当需要改变构件横截面时,应增大过度圆弧,以上都可以有效减小应力集中。
1.2.4降低温度、负荷
设备运行时,零部件之间的摩擦生热是正常现象,通过对局部降温的方法,可有效增加疲劳寿命。
期刊文章分类查询,尽在期刊图书馆如电子元器件,采用降温技术可以提升70%的使用寿命。在交变应力作用较低的环境下机械部件不易发生疲劳破损,一旦发生疲劳损伤,其速度也较为缓慢。结合实际,当机构在低应力作用下稳定工作一定时间,再逐步提升到所需求的应力范围,可有效改善抗疲劳强度。
1.2.5利用豪克能技术
常温下的金属具有冷塑性,利用豪克能中冲击能和激活能复合技术对材料表面进行二次深加工,可以使金属零件表面Ra值在0.2以下,降低表层的损伤,通过改善表面的压应力,提高表面的耐磨性、显微硬度以及疲劳寿命。
2.分析机械结构可靠性
2.1对机械结构可靠性的分析
进行机械结构设计时,在保证产品性能、质量及成本的情况下,需要重视产品可靠性技术、理论以及使用过程中维护方面的研究。机械结构可靠性是指在规定时间和环境下,产品性能的完成情况。其影响因素有很多种,如生产过程中机械设备及系统的日常维护保养、人工操作水平以及产品制造技术等。而在正常使用中,机械结构通常受到材料本身机械性能、环境、受力时间长短以及负荷大小,都会减短产品疲劳寿命,以上过程同时考验静态与动态下的产品可靠性。我国对于机械结构可靠性的研究相比较发达国家仍然存在着较大的差距,技术不够成熟发展缓慢,需要大力培养可靠性研发的技术人员以及对各个领域机械机构进行可行性的研究创新,所以不管进行产品设计制造还是使用过程中维护维修方面,可靠性都属于重要的研究对象。
2.2机械结构可靠性的设计方法
2.2.1储备技术
储备技术又称为冗余技术,是保障机械设备的稳定运转而采取系统并联模型来提高可靠性的一种方法。为保证设备工作有冗余,通常是同种规格两个或两个以上的结构单元并联工作,使各处受力均匀,来增强可靠性。
2.2.2产品疲劳寿命估算
产品的可靠性会随着受到交变应力的时间长短而发生变化,从静态试验角度出发,以产品在常温、常态应力作用下的力学性能,为参考条件,评估产品使用过程中的疲劳寿命。当达到评估值时,及时对机械结构易损件进行更换,从而稳定运行。
2.2.3降额设计
降额设计是机械设备可靠性设计的关键内容,通过限制设备零件所承受的应力值,使零件在小于额定值的情况下工作,来降低零部件故障率,若零件经常在额定应力值下工作,其各项机械性能退化速度较快,因此降额设计有利于减缓机械性能退化且此设计方法具有一定的安全余量,从而提高机械结构的可靠性。
结束语
机械结构抗疲劳以及可靠性的研究对于维护机械设备正常运行具有重要意义,如何使机构在交变应力作用下稳定工作是其中的难点内容。本文通过对机构抗疲劳与可靠性设计的方法进行深入分析与总结,希望在今后研发中人们能不断创新进一步改善疲劳破损现象的发生。
参考文献:
[1]左芳君.机械结构的疲劳寿命预测与可靠性方法研究[D].电子科技大学,2016.
[2]张新亮.机械结构抗疲劳与可靠性分析[J].农家参谋,2017,18:72.
[3]方秀菊.机械结构抗疲劳与可靠性研究[J].化工管理,2018,14:213-214.
[4]彭兆春.基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D].电子科技大学,2017.
[5]钟全飞.概率疲劳寿命预测方法及可靠性分析[D].电子科技大学,2013.
论文作者:秦俊沛
论文发表刊物:《基层建设》2019年第6期
论文发表时间:2019/4/18
标签:应力论文; 疲劳论文; 结构论文; 机械论文; 可靠性论文; 寿命论文; 材料论文; 《基层建设》2019年第6期论文;