相对静止人口与潜在人口红利测算方法研究,本文主要内容关键词为:人口论文,红利论文,方法论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
[中图分类号]C924.24 [文献标识码]A [文章编号]1004-129X(2015)01-0015-11 doi:10.3969/j.issn.1004-129X.2015.01.002 一、引言 劳动力资源相对丰富,抚养负担相对较轻,对经济发展十分有利的黄金时期,通常被人口经济学家称为“人口机会窗口”。对应地,由相对丰富的劳动力资源创造的增量经济价值,即为“人口红利”。中国的人口红利究竟有多大?这是一个重要又存在较大分歧的问题。原因是学术界对人口红利的测算至今缺乏一种有效的量化分析方法,以致与之紧密相关的一系列重大现实问题也悬而未决。例如,如何判断一个国家是否进入人口红利或人口负债时代?中国是否有效把握住人口机会窗口期而获得实实在在的人口红利?中国的人口机会窗口预计在什么时候关闭?蔡昉指出,传统意义上的人口红利正在消失,取而代之的是人口老龄化、劳动力市场供求关系变化、工资普遍上涨等现象的出现,标志着刘易斯拐点即将到来。[1]但这些重要观点由于缺乏人口红利这一直接证据,导致学者们对类似现象的判断产生巨大分歧。可见,解决人口红利测算方法的问题,对于合理解释由人口引起的一系列经济问题起着至关重要的基础性作用。 测算人口红利的难点之一是参照系的选择。原因是,缺少参照系的人口红利模型通常难以得到广泛的认同;但过于理论化的参照系又会导致人口红利的测算结果失去参考价值。作为测算人口红利的基础,本文建立的潜在人口红利测算模型首先尝试解决的一个问题是参照系问题,即既符合现实又可作参照标准的相对静止人口。为此重点研究了相对静止人口的若干特征,并与静止人口进行了比较。其次,在确立相对静止人口作为“标准人口”参照系的基础上,建立潜在人口红利的测算公式,能够估算由人口年龄结构或人均产出变动或二者同时变动而带来的潜在人口红利。最后利用算式对相对静止人口样本国家进行相互印证。 二、文献研究 如上文所述,参照系的选择对于测算人口红利至关重要。本文提出相对静止人口的概念实际上是为了确立一个既有可比度又贴近现实的参照系。如果按照有无参照系划分,关于人口红利的文献研究大体可以分为两大类:一类是以静止人口作为参照系的人口红利研究;另一类则是通过其他经济指标间接研究人口红利。总的来说,无论是否引入参照系,都能得到一些受启发的重要结论,但同时也发现一些值得深思的问题。 1.以静止人口作为参照系的人口红利研究 以往测算人口红利的算法主要采用静止人口作为参照系来衡量一个国家或地区在一定时期内获得的人口红利。首先,选择静止人口作为参照系是基于稳定人口理论。稳定人口是总人数每年按固定比例增加(或减少)的人口。查瑞传指出,在一个不存在对外迁移的封闭人口中,形成稳定人口的必要条件有三个:各年龄死亡率长期固定不变,每年出生率也固定不变,而且新生婴儿中的男女比例固定不变,长期发展下去便形成稳定人口。[2]其次,稳定人口分为三种情况:自然增长率为固定正值从而总人口单调递增、自然增长率为固定负值从而总人口单调递减以及自然增长率为零从而总人口保持不变。[3]当自然增长率为零时,出生率与死亡率相等,出生人数与死亡人数相抵,稳定人口就演变成静止人口。[2]再次,将静止人口锁定为参照系,可以测算出理论人口红利。但这种方法会存在以下问题: (1)静止人口考察的是理论人口红利。静止人口是经过数学模型推算出来的一种理想状态,因而利用静止人口测算出来的人口红利仅仅是理论人口红利。这个理论值在实际经济分析中的参考价值是有限的。因为在现实中,由于没有一个国家或地区能够实现静止人口这种状态,也就意味着,所有国家或地区都存在理论人口红利。那么,在这个测算出来的理论值当中,理论部分与现实部分之间的差距是多少,是难以把握的。 (2)静止人口的选择缺乏依据。由于静止人口是一种理想状态,因此在一些横向比较的文献当中,就会碰到静止人口的选择问题,即选择哪个国家或什么样的生命表人口近似看作静止人口。陈友华将抚养比低于或高于标准人口抚养比的5%视作“人口红利”或“人口负债”时期。关于静止人口的确定,他选择表征世界平均水平的瑞典生命表人口作为参照系,进而比较法国、日本和中国的人口红利和人口负债情况。[4]但为什么确定5%这一指标,为什么选择瑞典而非其他国家缺乏必要的证据支持,因而难以被普遍接受。关于参照系本身的研究,目前仅有少数文献做过探讨。 由于参照系的确存在较大分歧,大部分学者选择另辟蹊径,在参照系缺失的背景下,对人口红利展开了卓有成效的研究。 2.无参照系的人口红利间接效应研究 放弃参照系意味着不考察人口红利并假设人口红利存在。在这一假设前提下,多数学者将目光集中在人口红利的间接效应,即选择从人口结构与经济增长的逻辑关系入手,通过有关经济变量的变化解释人口红利。例如比较经典的是,Bloom等人发现人口年龄结构对经济增长产生的影响不亚于人口规模和人口增长。劳动年龄人口比重较高的国家,其生产性较强,储蓄率也较高,形成人口红利。[5]他们尝试以此揭示“东亚奇迹”之谜,虽然其实证分析没有获得多大的支持,但为人口红利的研究奠定了基础。此后,利用实证分析验证人口红利与经济变量关系的研究不在少数。尹银和周俊山就尝试运用两步系统GMM方法,结合多省份动态面板数据,证明人口红利是推动经济增长的主要因素之一。[6]在这类文献研究当中,经常出现两个严重的错误: (1)将人口机会窗口等同于人口红利。人口机会窗口是在一个时期内,生育率迅速下降,少儿与老年的抚养负担相对较轻,从而总人口中劳动适龄人口比重上升,形成一个劳动力资源相对丰富,对经济发展十分有利的黄金时期。[7]但人口机会窗口不等于人口红利。正如刘元春等强调的,人口机会窗口是时间概念,而人口红利则是经济概念。人口机会窗口只是经济增长的必要条件而不是充分条件。[8]如果仅凭实际人口结构与静止人口的比较结果,就武断地判断一个国家是否处于人口红利或人口负债时代,是完全错误的。 (2)将潜在人口红利等同于人口红利。在大多数测算人口红利的算法中,有学者采用理论抚养比,即15~64岁人口在总人口中所占的比重来考察人口红利。这种做法是不恰当的,因为测算出来的仅仅是潜在人口红利。正如穆光宗指出,测算人口红利的指标应该是实际抚养比,即不在业人口与在业人口之比。[9]只有考察了一个国家在人口机会窗口时期是否充分有效地利用了相对富裕的劳动力资源,才能做出其获得了人口红利的判断。 有关人口红利的间接效应。国内外学者做了丰富且有价值的研究。但多数文献对人口红利的研究仍然处于定性分析阶段,并没有给出一个比较严谨的测算结果。由于缺乏建立在参照系基础上的严谨的推导和充分的证据支持,所以这类研究的一些重要观点往往也存在较大分歧。 3.无参照系的人口红利间接效应研究——人口老龄化 随着人口老龄化的凸显和人口年龄结构的变化,与人口红利测算有关的另一个重要因素逐渐显现出来,那就是人口质量。不少文献指出,人口老龄化之后的第二次人口红利实质上是人口质量的提高带来的。例如,Lee和Mason提出第二次人口红利的概念,认为人口老龄化一方面使得消费支出逐步减少,另一方面使得储蓄率增加,从而转化为社会财富。同时劳动人口的减少使得人均资本得以提高,进入第二次人口红利期。[10]蔡昉进一步指出,应对老龄化的有效手段是延长退休年龄,但需要保证经济增长才能维持充足的劳动力需求。这就要求持续的人力资本投资和维持人力资源比较优势,促进中国从第一次人口红利顺利过渡到第二次人口红利。[11]梁颖和陈佳鹏指出,日本的经验表明,在人口老龄化形势下,人力资本的极大提高为日本经济的低速增长创造了有利条件。[12] 因此,这类文献给出了一个重要启示:人口的数量和质量似乎都对人口红利产生重要影响,这意味着人口红利不仅受到反映数量的人口年龄结构变动的影响,同时还受到反映质量的人均产出的影响。因此,人口红利公式必须包含上述两个方面。 4.纯粹抽象的人口红利模型研究 这类研究既撇开参照系,又抛弃人口数据,尝试通过构建复杂且抽象的人口红利模型得出一些结论。笔者认为,这是不能令人信服的。再完美的数学证明也必须经过实证的检验。另一方面,任何企图将所有经济因素都纳入考察范围的尝试都将是徒劳的,一个复杂的计量经济模型大多只会带来不稳定的甚至自相矛盾的结论。因此,合理的假设、简约的论证及数据的验证是得出令人信服的结论的关键。 综上所述,部分缺少参照系的文献虽然得到一些重要结论,但由于缺乏直接证据而受到质疑,包括人口红利这一前提。为了得到令人信服的结论,笔者认为,引入参照系是必需的,但这一参照系需要重新确立,以克服静止人口因过于理论化而失去实际参考价值的缺陷。与此同时,一个合理的人口红利算法必须满足以下两个条件:一是必须结合人口数据基本面,二是包含反映人口数量和人口质量的因素。 三、研究方法 学术界寻找参照系的探索并没有停止。首先,从世界人口发展历程看来,不难发现,有部分国家和地区在相当长的一段时期内,其总人口保持在一个相对稳定的水平上。相对于其他国家和地区而言,这些国家和地区的总人口变化并不大,其特征比较接近于自然增长率为零的稳定人口状态,可谓处于一种“相对静止人口”状态。我们可以通过统计分析,筛选出处于相对静止人口状态的样本国家。 其次,相对静止人口能否取代静止人口作为衡量人口红利的参照系,还需要在二者之间进行比较研究。一方面,比较二者在出生率、死亡率及男女比例等有关特性方面的趋同性,从而判断二者的相互替代性;另一方面,在上述条件满足的前提下,重点考察相对静止人口的人口年龄结构特征,从而为研究潜在人口红利奠定基础。 再次,建立潜在人口红利模型。该模型以相对静止人口作为参照系,综合考察人口数量和质量变化两方面,进而测算潜在人口红利。 最后,利用该模型算法,逆向考察处于相对静止人口状态的国家的潜在人口红利。一方面需要验证相对静止人口的特性,另一方面则需要证明其潜在人口红利很小。 本文采用的数据均源自世界银行集团的世界发展指标数据库(World Development Indicators,WDI),选取总人口、粗出生率、粗死亡率、女性人口比重、15~64岁人口比重、人均国内生产总值等指标进行统计分析,覆盖范围包括251个国家和地区,时间跨度最长达到52年。 四、相对静止人口及其特性 1.相对静止人口判断指标——总人口变异系数 倘若一个国家总人口在较长时期内的变动相对较小,那么我们认为其处于相对静止人口状态。我们通过考察1960~2011年251个国家和地区总人口的变异系数,从中筛选出符合条件的样本。考察变异系数的公式如下: 其中,N为样本数量;为第i个样本值;μ为总体样本平均值;σ为总体样本标准差;cν为变异系数。计算结果显示,在扣除无相关数据后的240个国家和地区中,有10个样本(约占总体样本数量的4%)的变异系数小于5%,表明这些样本国家各年度的总人口与其总人口平均值之间的距离(差异)的整体平均值,在总人口平均值中所占的比例均不到5%,反映了1960~2011年,各年份总人口数据的离散程度很小。也就是说,这10个国家总人口的变化幅度是很小的,总人口数量保持相对稳定。同时,变异系数小于10%的国家和地区有43个,约占总体样本数量的17%(见表1)。 我们认为,这43个国家和地区比较接近于相对静止人口状态。下面以这些样本为研究对象,分别考察相对静止人口与性别结构、自然增长率、年龄结构之间的相关关系。 2.相对静止人口与性别结构 女性人口比重是人口增长趋势的重要先行性指标之一。当一个国家人口趋于静止时,其男女比例也将趋于稳定不变。不仅如此,女性人口更替数量趋于固定不变,出生女婴人数等于死亡女性人数,从而保证总人口更替比例不变。这一结论得到上述43个国家和地区相关数据的印证。扣除无相关数据的国家和地区,38个样本女性人口比重的变异系数非常小,整体均值只有0.81,表明接近相对静止人口状态的各样本,52年来女性人口比重的变化甚微(见表2)。 然而,女性人口的比重却不能揭示人口变动的趋势。38个样本女性人口比重52年均值的整体平均值为51.72%,其置信水平为95%的置信区间是(51.37,52.08)。在所有208个样本当中,落在这一置信区间的有26个样本,其中只有13个样本的总人口变异系数小于10%。同理,总人口变异系数小于5%的9个国家,其女性人口比重52年均值的整体平均值为51.55%,其置信水平为95%的置信区间是(51.14,51.96)。而落在这一置信区间的31个样本中,只有5个样本的总人口变异系数小于5%,只有16个小于10%。不仅如此,208个样本的总人口变异系数与其女性人口比重均值之间的相关系数为-0.53,表明二者的线性相关性较小(见图1)。 图1 总人口变异系数与女性人口比重均值散点图 可见,女性人口比重相对稳定仅是总人口相对静止的必要条件。当一个国家总人口处于相对静止状态时,其女性人口比重相对稳定。但倘若后者变化很小时,却不能保证该国家总人口变化不大。 3.相对静止人口与自然增长率 按照稳定人口理论,当一个国家的总人口保持静止时,其自然增长率为零。如此类推,若总人口保持相对静止时,其自然增长率接近为零。通过考察上述国家和地区的相关数据,推论成立。 38个样本1980~2010年自然增长率均值的整体平均值为2.66‰,除个别国家外,整体处于较低水平。其中,总人口变异系数小于5%的9个国家,其自然增长率均值的整体平均值仅有1.94‰。 但值得说明的几点是:第一,自然增长率的变异系数变化较大,原因可能是正负相抵而使平均值接近零,导致各年份自然增长率与平均值之间的差异较大。第二,粗出生率和粗死亡率均维持在一个较高水平。粗出生率较高的原因可能是二战后世界处于和平发展时期,给人类的繁育生息创造了有利条件。同时,粗死亡率也较高可能是资源和自然承载能力短期内的相对不足导致的。但除个别国家外,粗出生率和粗死亡率均比较接近,这与通常认为的“当生育水平处于死亡水平时,人口稳定下来保持不变”[3]相吻合。第三,粗出生率的变动相对较大而粗死亡率的变动则相对较小。粗出生率变动较大可能是周期性的经济波动影响到生养育成本,导致粗出生率变化较大,从而使自然增长率也起伏较大。而变动较小的粗死亡率,尤其是变异系数小于5%,可看作是基本服从人口更替的自然规律。 反过来,自然增长率的低速增长能否保证人口的相对稳定?答案是肯定的。在自然增长率均值小于5‰的39个国家和地区中,总人口变异系数小于10%的样本有31个,占比79.49%。与此同时,考察211个国家和地区自然增长率均值与总人口变异系数之间的相关性后发现,其相关系数为0.89,表明二者之间以较高的概率存在线性关系。经过线性回归分析,得到以下结论: 该模型的拟合优度为0.80,反映整体模型显著,表明总人口变异系数(TP.cν)与自然增长率均值(NG.μ)之间存在较强的同方向变动关系(见图2)。 图2 总人口变异系数与自然增长率均值线性关系图 综上分析可以得到以下结论:相对静止人口与低速自然增长率互为充要条件。一个自然增长率保持接近于零的国家,其总人口更容易保持一种相对静止状态。 4.相对静止人口与年龄结构 出生率、死亡率、新生婴儿性别比例均固定不变所形成的稳定人口,其重要特征之一是各年龄人口都在以相同的比率增加、减少或不变,因而在总人口中的比重保持不变。于是,我们可以做出如下推断:当人口保持相对静止时,各年龄段人口在总人口中所占比重也应变化不大,人口年龄结构保持相对稳定。根据国际惯例,我们选取15~64岁年龄段人口数量在总人口中的比重作为考察对象,研究各样本年龄结构的变动情况(见表3)。 观察表3发现,总人口变异系数小于10%的31个国家和地区样本,其15~64岁年龄段人口占比的变异系数也很小(表3第四、八列),变异系数的整体平均值为2.43%。其中,总人口变异系数小于5%的8个样本,其变异系数的整体平均值只有2.25%。这证明上述推断成立。 另一方面,31个样本15~64岁年龄段人口比重52年均值(表3第三、七列)的整体平均值为65.96%,其置信水平为95%的置信区间是(65.52,66.40)。在有统计数据的101个样本中,落在这一置信区间的有11个样本,总人口变异系数小于10%的有9个。同理,总人口变异系数小于5%的8个国家,其整体平均值为66.04%,置信水平为95%的置信区间是(65.28,66.79)。落在这一置信区间的17个样本中,总人口变异系数小于5%的有5个,小于10%的有12个。 进一步,我们集中考察这101个样本,其15~64岁年龄段人口比重均值与总人口变异系数之间以较高的概率存在线性关系,相关系数为-0.94,表明二者呈反方向变动的关系。经过线性回归分析,得到以下结论: 该模型的拟合优度为0.88,反映整体模型显著,表明15~64岁年龄段人口比重均值(AS.μ)与总人口变异系数(TP.cν)之间存在较强的反方向变动关系(见图3)。 图3 总人口变异系数与15~64岁年龄段人口比重均值线性关系图 综上可得:相对静止人口与相对稳定年龄结构互为充要条件。一个总人口保持相对静止的国家,其年龄结构也相对稳定。同时,值得强调的是,15~64岁年龄段通常被视为适龄劳动年龄段,是区分抚养人口和劳动人口的重要指标。通过考察适龄劳动年龄段的人口数量变动情况,可以为进一步考察潜在人口红利奠定基础。 五、潜在人口红利 如上文所述,潜在人口红利形成于人口机会窗口期。在非静止人口状态下,人口年龄结构的变动引致适龄劳动人口比重上升,劳动力资源相对丰富,使得潜在经济产出增加,形成潜在人口红利。 首先,确立相对静止人口参照系。经过上面分析,总人口变异系数小于5%的8个国家样本,其15~64岁年龄段人口比重52年均值的整体平均值为66.04%,其置信水平为95%的置信区间是(65.28,66.79)。在这一区间内的年龄结构是相对稳定的人口年龄结构。又因为相对稳定人口年龄结构与相对静止人口互为充要条件,所以我们将这一整体平均值及其置信区间界定为相对静止人口参照系。与此同时,我们可以通过考察任一国家和地区适龄劳动年龄段的人口数量变化情况,判断劳动力资源的禀赋程度。 其次,影响潜在人口红利的另一个关键因素是人均经济产出。随着教育等基础性人力资本投资的加大,人口素质得到逐步提高,劳动力创造的价值也在不断增加,使得衡量人均经济产出的人均国内生产总值稳步增长。因此,即便同一个国家,在两个不同的时期,有着相同的人口机会①,其测算出来的潜在人口红利也不相等。 归纳起来,一个国家某一年份的潜在人口红利的公式可表示为: 潜在人口红利=(实际人口年龄结构-相对静止人口参照系)×总人口×人均国内生产总值 (6) 其中,实际人口年龄结构用15~64岁年龄段人口实际比重表示。 六、算法检验 根据公式(6),我们逆向考察处于相对静止人口状态的样本国家。结合上文分析,处于相对静止人口状态的样本国家,其潜在人口红利也应该很小。我们可以通过考察潜在人口红利在国内生产总值中所占的比重加以判断(见表4): 表4反映的是1990~2011年总人口变异系数小于2%(表4第二、六列)的13个国家,其相对静止人口的置信区间上限65.28和下限66.79,分别对应的潜在人口红利在国内生产总值中所占的比重(表4第三、四、七、八列)。比重越小,说明潜在人口红利也越小。不难发现,13个国家的潜在人口红利都很小。相反,总人口变异系数大于10%的89个国家和地区都存在潜在人口红利或负债,以置信区间上限(α.UP.μ%)有关数据为例(见图4)。 图4 总人口变异系数小于2%和大于10%的国家和地区潜在人口红利比较 值得指出的是,部分总人口波动较大的国家,其潜在人口红利却很少。其中的原因主要是:在考察期内,这些国家正在经历从潜在人口负债向潜在人口红利转变的阶段,因此正负相抵后所得到的比重均值便较小(见图5)。 图5 总人口变异系数大于10%的4个国家潜在人口红利变化图 因此可以得到以下结论:处于相对静止人口状态的国家,其潜在人口红利相对较小。 七、总结 利用变异系数确定的相对静止人口,其特性与静止人口具有高度相似性,包括了自然增长率接近于零、性别结构相对固定、人口年龄结构相对稳定且趋于一个合理的水平,等等。在此基础上,利用相对静止人口代替静止人口测算潜在人口红利是可行的。测算结果显示,处于相对静止人口状态的国家和地区,其潜在人口红利也很小。这进一步证明,相对静止人口作为参照系是有效的,可以衡量非稳定人口国家和地区的潜在人口红利,尤其是测算中国的潜在人口红利。借此参照系,也可以比较不同国家的潜在人口红利及其对经济的贡献。 通过测算潜在人口红利,能够为进一步研究人口红利打下基础。潜在人口红利是人口红利的最大值,二者之间的区别在于就业。我们可以引入有效反映就业状况的相关指标,进而从潜在人口红利过渡到人口红利的研究。与此同时,通过测算潜在人口红利,能够帮助我们比较客观地看待人口红利,既不会否定其存在,也不会过分夸大其作用。一方面,人口年龄结构的变动的确会引起劳动力供给的相对充足和抚养压力的减轻,潜在人口红利的增加有助于经济的提速。另一方面,测算这种直接效应对我们研究间接效应有重要指导作用。无论人口机会窗口怎样有利于消费和投资的增长,从而形成潜在人口红利的间接效应,都不能否定的一个事实是,间接效应不会超过直接效应,否则人口超生的激励将带来灾难性的后果。因此,研究人口机会窗口对投资、消费等经济变量的影响,不能过分夸大人口年龄结构的作用。 [收稿日期]2014-06-27 注释: ①人口机会指用相对静止人口作参照系计算的适龄劳动人口数量与实际适龄劳动人口数量之间形成的差额。标签:人口红利论文; 自然增长率论文; 变异系数论文; 置信区间论文; 人口年龄结构论文; 经济模型论文; 样本均值论文; 出生率论文; 经济学论文;