统计学中几个容易混淆的问题论文

【学法指导】

统计学中几个容易混淆的问题

张明亮

(河南大学 民生学院,河南 开封 475004)

摘要: 统计学是一门重要的学科,在日常生活中有着极其广泛的应用。本文对统计学教学中几个容易混淆的问题进行阐明,旨在帮助学生对统计学中的一些概念有个正确的理解。

关键词: 统计学;直方图;总体;相关系数

统计学是一套处理和分析数据的方法和技术,是一门数据分析的学科。统计学作为一门基础课程,越来越受到人们的重视,呈现着新的发展趋势及活力。但是,学生往往对一些概念产生模糊认识,甚至一些教科书中,也出现对一些概念表述不清的情况,这里就学生在学习中容易产生混淆的几个问题进行阐述,旨在帮助学生对一些概念有一个正确的理解。

何良诸相信了,在北大坎矿区,掀起过寻宝狂潮。盗墓者的手,才会那么粗野贪婪;常年在荒郊野外死人堆里干活,声音才会这么沙哑沧桑。另一位呢?

方案二:选用STM32F103 系列MCU 用于控制方案,使用STM32 MCU 作为核心控制芯片[5],该芯片可以进行扩展,与外设进行连接通信,且控制速度较快,非常利于资源开发。

一、直方图与条形图

直方图是统计学中对数据描述的一个图形,在高中教材中也有介绍,但有一部分学生对这个概念理解不清。曾对学习统计学一年以后的大三学生做过一项统计学方面的调查,班级共有68名学生,有36名学生对直方图与条形图不能很好地区分开来,约占53%。有的学生把二者混为一谈,对于二者的应用范围分不清楚。条形图是用宽度相同的条形的高来表示数据多少的图形,每一矩形表示一个类别,其宽度没有实际意义,每个小矩形不相连。条形图有单式条形图和复式条形图之分,它一般适应于品质数据。

直方图是用于展示定量数据分布的一种常用图形,它是用矩形的宽度和高度来表示频数的分布,矩形的宽度表示分组数据的组距,由于分组数据具有连续性,所以每个矩形是相连的,通过直方图可以观察数据分布的大致情况。一般用每个小区间内的频率比上组距来表示小矩形的高度,这样做是为了使得直方图围成的面积为1,因为一维连续型随机变量的概率密度函数与x轴围成的面积为1,通过对直方图的折线近似拟合,观察这条折线与已知分布的哪个概率密度函数拟合得比较好,可得出这组数据的大致分布。

根据式(4.11)得标准差为(元)。

二、对总体的理解

总体是指研究的对象的全体或试验的全部可能的观察值。由此可见,总体是指研究对象,一般是一些具体的数值。如,要考察一个班级《统计学》期末的考试成绩,不能把这个班的学生看作总体,而应是每个学生的《统计学》成绩组成的集合为总体,因为这里考察的仅仅是《统计学》的成绩,而不是其他学科的成绩。有的学生对总体理解不到位,甚至一些教材上也犯有同样的错误。

三、方差与标准差的单位

当rXY=1时,称随机变量X与Y正相关;当rXY=-1时,称随机变量X与Y负相关;当rXY=0时,称随机变量X与Y不相关。说明相关系数定量地刻画了随机变量X、Y的线性相关程度,这里需注意的是:相关系数为零,只能说明随机变量X与Y不具有线性相关关系,未必没有关系;相关系数为1,也只能说明随机变量X与Y之间以概率1存在着线性关系,直观来说,就是几乎所有的点(X、Y)都在直线Y=aX+b上,允许个别点不在这条直线上,不在这条直线上的点的概率应为0,但不能说二者具有函数关系。在有些教材中,把=1与二者具有函数关系等同起来,此教材这样描述相关系数:“可以证明,相关系数的取值范围在+1和-1之间,即-1<r<1。若0<r<1,表明x与y之间存在正线性相关关系;若-1<r<0,表明x与y之间存在负线性相关关系;若r=+1,表明x与y之间为完全正线性相关关系;若r=-1,表明x与y之间为完全负线性相关关系。可见当=1时,y的取值完全依赖于x,二者之间即为函数关系;……”

回归分析是数理统计中的一个重要概念,它是刻画一个变量或者一些变量对一个特定变量是否有影响,影响程度如何,如果有影响,怎样把这种关系用一个函数式子近似地描述出来,即建立回归方程。对于一元线性回归模型Y=β01x+ε,这里β0,β1为未知参数,并假设随机误差ε要服从正态分布,E(ε)=0,D(ε)=σ2。即进行n次独立观察,得到样本(xi,yi)(i=1,2,…,n),这里x1,x2,…,xn不全相同,有

但是,在有的教材中,往往把直方图的高这一数据标错,给学生理解带来困难。右图为某公司电脑销售额分布的直方图,从图中可以看出,纵坐标标出的高度都不是频率与组距的比,直方图围成的面积自然也不能保证是1。

可数和无穷多是两个不同的概念。可数可以简单地认为是可以按一定顺序排列出来,所以也称为可列。如所有自然数{0,1,2,3,…}是可数个,只要能与自然数一一对应就是可数的,如所有奇数、所有偶数、所有有理数都是可数的。不可数就是没有办法一一排列出来,如区间[0,1]内的所有实数就是不可数的。

四、无限与不可数

这里方差与标准差的单位都写成了“元”,这是一个明显的错误。

五、相关系数及其含义

随机变量X、Y的相关系数一般用rXY(简记为r)或ρXY表示,定义为,这里随机变量X、Y协方差存在,它们的方差存在且不为零。它具有性质的充分必要条件是:存在常数a,b,使得P{Y=aX+b}=1。

随机变量X的方差用D(X)或Var(X)表示,若E[X-E(X)]2存在,则D(X)=E[X-E(X)]2称为随机变量X的方差。它刻画了随机变量X的取值与其数学期望E(X)的偏离程度,若方差较小,意味着随机变量X的取值比较集中在E(X)附近,反之,说明随机变量X取值比较分散。方差的开平方称为标准差或均方差。方差和标准差是否有单位,应该怎样定义单位呢?关于这个问题有很多人认识不清,方差和标准差是否有单位,取决于“样本数据”,若“样本数据”有单位,那么方差和标准差均有单位;若“样本数据”是没有单位的数值,那么方差和标准差均没有单位。由方差的定义知,一个随机变量X的方差,是这个随机变量与它的数学期望的差的平方的数学期望,若这个随机变量X有单位,它的数学期望就与这个随机变量具有相同的单位,二者差的平方的单位应该是原单位的平方,再求数学期望则单位不变,因此,方差的单位应该是“样本数据”单位的平方,而标准差是由方差开方得到,所以标准差的单位与“样本数据”的单位相同。如果数据的单位是千克,方差的单位就是千克的平方,标准差的单位就是千克;如果数据的单位是秒,方差的单位就是秒的平方,标准差的单位就是秒。只是现在教科书中对方差的单位比较淡化,一般考试中,所求的方差不要求写单位。但是,在有的教材中仍会出现单位标注错误。有本教材给出的例题是这样的:

六、一元线性回归模型

例:根据例4.1的数据,计算9名员工月工资收入的方差和标准差。

壳体类铸件(或阀体)通常采用直浇口多层内浇口或单独直浇口每组1件的浇注系统设计。阀体类的工作要求是耐压、不渗漏,故在设计浇注系统时主要考虑要避免缩松、缩孔缺陷。阀体类浇注位置主要有两种,即中法兰向上和中法兰向下。对于底座类铸件,在热节处设置拉筋,目的是一方面防止铸件变形,另一方面利用拉筋的厚大截面,兼起冒口作用来实现对两端热节的补缩。对于大型复杂铸件的浇冒口设计,需要考虑浇注时及浇注后型壳和铸件上的温度场分布情况。避免液流大量地冲刷型壳以及在型壳散热不好的地方形成新的热节。

这里的εi要求是独立同分布。但在一些教科书中,它只强调回归方程,对回归模型所要满足的条件只字不提,如“对于只涉及一个自变量的一元线性回归模型课表示为:y=β01x+ε,在一元线性回归模型中,y是x的线性函数(β01x部分)加上误差项ε。β01x反映了由于x的变化而引起的y的线性变化;ε是被称为误差项的随机变量,它反映了除x和y之间的线性关系之外的随机因素对y的影响,是不能有x和y之间的线性关系所解释的变异性,式中的β0和β1称为模型的参数”。

丁香酚微乳(pH=7.0)及海藻酸钠修饰丁香酚微乳(pH=4.5)中加入不同浓度的氯化钠溶液,使其离子浓度最终达到0,250,500 mmol·L-1,再分别用相同离子强度的氯化钠溶液稀释100倍,测定其粒径分布。

总之,有些概念在一些教科书中介绍不清,老师在讲授时又不够重视,使得学生对这些概念不能很好地掌握,这是造成学生错误的根本原因,值得重视。

参考文献:

[1]贾俊平.统计学基础[M].第3版.北京:中国人民大学出版社,2013.

[2]盛骤,谢式千,潘承毅.概率论与数理统计[M].第4版.北京:高等教育出版社,2011.

Several Problems that are Easily Confused in Statistics

ZHANG Ming-liang
(Minsheng College,Henan University,Kaifeng,Henan 475004,China)

Abstract: Statistics is an important subject and has a wide range of applications in daily life.This article clarifies several confusing issues in statistics teaching to help students have a correct understanding of some of the concepts in statistics.

Key words: statistics;histogram;population;correlation coefficient

中图分类号: C81

文献标志码: A

文章编号: 1674-9324(2019)24-0188-02

收稿日期: 2018-11-24

基金项目: 本文系河南大学民生学院教育教学改革研究项目“统计学课程教学改革与实践探究”(项目编号:MSJG2014018)研究成果

作者简介: 张明亮,教授,硕士生导师,研究方向为概率统计、数学教育。

标签:;  ;  ;  ;  ;  

统计学中几个容易混淆的问题论文
下载Doc文档

猜你喜欢