摘要:本文主要对地铁大体积混凝土的施工质量进行分析,阐述了其质量缺陷所产生的原因,经过优化配合比设计,改善施工工艺,做好温控、养护的工作,对控制地铁大体积混凝土的温度裂缝与施工裂缝的发生起到很好的作用,以达到良好的施工质量。
关键词:地铁工程;大体积混凝土;施工质量;控制措施
前言:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。大体积混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。
1 地铁大体积混凝土施工质量问题产生的原因分析
1.1 收缩裂缝
混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,用水量和水泥用量越高,混凝土的收缩就越大。选用水泥品种的不同,干缩、收缩的量也不同。混凝土逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力。如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。在大体积混凝土里,即使水灰比并不低,自身收缩量值也不大,但是它与温度收缩叠加到一起,就要使应力增大,所以在水工大坝施工时早就将自身收缩作为一项性能指标进行测定和考虑。
1.2 温差裂缝
混凝土内外部温差过大会产生裂缝。主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。大体积混凝土结构一般要求一次性整体浇筑。浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不易散发,混凝土内部温度将显著升高,而其表面则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力。此时,混凝龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土表面产生裂缝。
2 大体积混凝土施工质量控制措施
2.1 大体积混凝土配合比设计
2.1.1原材料质量控制:尽量选用低热水泥(如矿渣水泥、粉煤灰水泥),减少水化热。但是,水化热低的矿渣水泥的析水性比其他水泥大,在浇筑层表面有大量水析出。这种泌水现象,不仅影响施工速度,同时影响施工质量。混凝土泌水性的大小与用水量有关,用水量多,泌水性大,且与温度高低有关,水完全析出的时间随温度的升高而缩短;此外,还与水泥的成分和细度有关。所以,在选用矿渣水泥时应尽量选择泌水性的品种,并应在混凝土中掺入减水剂。在施工中,应及时排出析水或拌制一些干硬性混凝土均匀浇筑在析水处,用振捣器振实后,再继续浇筑上一层混凝土。
2.1.2适当掺加粉煤灰。混凝土掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱骨料反应,减少新拌混凝土的泌水等。
2.1.3选择级配良好的骨料。细骨料宜采用中粗砂,细度模数控制在2.8~3.0之间,因为使用中砂比用细砂可减少水和水泥的用量。砂、石含泥量控制在1%以内,并不得混有有机质等杂物,杜绝使用海砂;粗骨料在可泵送情况下,选用粒径5~20mm连续级配石子,以减少混凝土收缩变形。
2.1.4适当选用高效减水剂和引气剂,这对减少大体积混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形、耐久性等性能起着极为重要的作用。
2.2温控措施及施工现场控制
2.2.1温度预测分析。
期刊文章分类查询,尽在期刊图书馆根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准及进行保温养护优化选择。
2.2.2混凝土浇筑方案。采用延缓温差梯度与降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间;控制混凝土入模温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振及过振,确保混凝土均匀密实;做好现场协调、组织管理,要有充足的人力、物力,保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理(一般浇筑后3~4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压两遍,再用木抹子搓平压实)以控制表面龟裂;混凝土浇灌完及拆模后,立即采取有效的保温措施并按规定覆盖养护。
2.2.3混凝土温度控制。为了降低混凝土的总温升,减少内外温差,控制混凝土出机温度和浇筑温度是一个很重要的措施。对混凝土出机温度影响最大的是石子及水的温度,砂次之,水泥的影响较小。因此,具体施工中可采取加冰拌和,砂石料遮阳覆盖,送管道用草袋包裹洒水降温等技术措施。预埋水管,是降低混凝土浇注温度的有效措施。冷却水管大多采用直径为25mm的薄壁钢管,按照中心距1.5~3.0m交错排列,水管上下间距一般也为1.5~3.0m,并通过立管相连接。
2.2.4通水冷却。采用薄壁钢管在一些混凝土浇筑分层中布设冷却水管,冷却水管使用前进行试水,防止管道漏水、阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。
2.3 加强混凝土养护
大体积混凝土的养护,可根据工程的具体情况,采用薄膜加草袋或蓄水的养护方法。在控制内外温差的前提下,应尽可能推迟保温层开始覆盖的时间。大体积混凝土保温保湿养护中,应对混凝土的内表温度,顶面及底面温度,室外温度进行监测,根据监测结果对养护措施作出相应的调整,确保温控指标的要求。温度测定可采用在每个测温点上埋设测温片。
2.4 裂缝控制的措施
2.4.1通过控制混凝土的温升来降低温度应力
选用中低热的水泥品种,以减少水化热的产生;用掺合料来转换部分水泥,可利用混凝土后期强度;用添加外加剂来延缓水化热释放速度;通过调整原材料入机温度及运输途径来控制混凝土出机温度和入模温度。对温度应力进行理论计算,选择经济、可行的技术措施,实施温度动态监控,做到信息化施工。
2.4.2控制混凝土降温速率。充分发挥徐变特性
做好保温和降温工作,控制内外温差,达到同步降温,减小温度梯度;内部设冷却水管,循环带走部分热量,来降低内部温度。
2.4.3提高混凝土的极限拉伸值
控制原材料质量,尤其是骨料的级配和含泥量,合理确定配合比。加强混凝土的二次振捣,提高密实度。采取一些构造上的手段,改善边界约束条件。
结束语:
总而言之,裂缝是混凝土结构中普遍存在的一种现象,在大体积混凝土构件中尤为明显,它的出现不仅会降低建筑物的抗渗能力,影响建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响建筑物的承载能力,因此要对混凝土裂缝进行认真研究、区别对待、采用合理的方法进行处理,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,保证建筑物和构件安全稳定的工作。
参考文献:
[1]王升涛,张洪海.浅谈大体积混凝土裂缝的防治[J].科技资讯,2006,(09).
[2]杨勇.大体积混凝土的施工[J].山西建筑,2008,34(14):147~148.
[3]赵国藩.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.
论文作者:范蒙
论文发表刊物:《基层建设》2016年第34期
论文发表时间:2017/3/20
标签:混凝土论文; 温度论文; 裂缝论文; 体积论文; 水化论文; 水泥论文; 应力论文; 《基层建设》2016年第34期论文;