摘要:大数据技术的应用在分析处理智能电网的大规模数据中正发挥着越来越重要的作用,它取代了传统的数据处理技术,使得规模更大的数据集合和种类更复杂的数据结构得到高效率的处理。大量的数据给智能电网建设带来了机遇与挑战,电力企业在发展中要顺应这一时代潮流,积极的实现管理工作的信息化,促进电力企业在电网管理方面工作质量的提升,保证社会生产活动的有效进行。
关键词:大数据;智能电网;应用;高效
引言
在整个智能电网系统中都有大数据的应用,电网运用及设备、数据的检测、企业营销数据、企业管理数据等是智能电网系统应用的表现。随着社会经济的不断进步,电网规模也随之扩大。逐渐提升接受、处理数据量在输电线路中的状态。因此,需要更加专业的技术人员进行数据处理以及设备维护,同时增强处理输电线路中大数据的力度,着力剖析输电线路系统的检测性能,逐渐顺应智能电网发展的需求。
1大数据技术在智能电网中的应用存在的问题
1.1 电力系统本身的发展情况制约
它是一个规模宏大、牵连甚广的传统行业,在引入新技术、新理念的过程中必然经历较长时期的磨合和研发,现有的电力信息系统要想适应大数据技术就要做到从上至下全面的技术匹配,这显然是一个庞大的工程;另一方面是大数据技术的发展并不成熟,它的理论架构和应用案例都还处于探索和研发的阶段,由于规模的原因,大数据平台往往意味着巨大的建设投资,给建设主体部门带来了巨大的投资风险。
1.2 数据收集和处理障碍
智能电网大数据平台的建设在数据获取上也存在着很大的障碍,不仅有硬件技术上的不足,而且各部门之间的沟通不足和独立运行也和大数据技术的集中管理存在一定的共享矛盾。但也不是意味着全面的开放信息共享就是好的方法,相反,如果这样做的话,我们必须充分考虑到数据的安全问题,如何设定适用范围,如何注重隐私保护,如何合法合规地公开使用,这是智能电网大数据发展中必须考虑的问题。各个部门之间的信息传递较为缓慢,尤其是各个部门在工作中所形成的独立信息库,因为技术和资金的双重制约,使得大数据时代下的信息共享难以实现。虽然现在的信息处理和数据挖掘技术已经非常的完善,但是因为很多信息属于半结构和非结构数据,这些数据如果不纳入大数据库中,就会使得数据库中的样本数据较少,但是如果放入数据库中,就会因为不能够迅速的转化为多维数据表,出现数据无效的现象,其中图像就是这一数据类型的典型代表。
2 大数据的关键技术
大数据技术在智能电网中运用的关键技术就是数据融合技术,在现在的国家电网中,无论是输配电的使用信息,还是用户用电的具体信息,都会因为办公的计算机化,使得这些信息能够被收入到大数据的信息库中,使用数据挖掘以及数据处理处理技术,就能够很快的将这些技术进行完成,最大限度的推进电网正常运转。同时,由于大数据技术在使用中存在着多维度的特性,所以为了强化这一数据分析的能力,保证数据分析所产生的结果,能够给大数据的使用带来便利,就需要从三个维度去对电力舍不得当前状态进行分析。大量的实践数据表明,这三个维度在电力设备是否能够正常工作的判定条件,分别为关键参量、气象、地理位置。但是这三个维度的信息在来源和储存方式都不尽相同,所以在进行数据分析工作时,需要将这些数据按照一定的逻辑进行储存,保证后续进行的数据分析工作能够有效进行。
期刊文章分类查询,尽在期刊图书馆
3 智能电网大数据技术的发展措施
3.1 大数据传输和存储技术
电力系统、智能电网发展变革的趋势中,记录具体的数据运行和设备状态,可以发现大量的数据存储问题,在监控装置中具有较大的压力,因此,电力系统智能化的发挥受到一定限制。增强网络数据传输的关注量,就是有效利用数据压缩来实现。依据数据存储的具体情况,利用分布式的文件系统完成存储工作是智能电网数据运行的方式,针对大数据进行存储,不能很好的提升电力系统的实时性。所以需要根据大数据的性能、分析要求,具体分类对其进行存储,针对实时数据的要求,运用数据库系统进行相关工作。采用传统的方式进行数据存储,这是核心业务数据的处理方式,数量较大的非结构化数据,主要采用分布式的文件系统。
电网检测数据的实时性在国内的云平台还不能得到有效的保障,所以,设置出前置机在数据接入和信息集成前段,将报警信息以及检修数据实时接受,在不能准确回应的时候,电网检测将取代云平台的作用,其负责暂时存储数据。比较智能电网格式和传统商业数据的关系,二者区别明显,都有自身的特征,能够产生较大的生成速度在检测故障以及输变电设备的过程中。当前有效提升后续数据分析和计算的方式就是着力研究智能电网存储格式的细节技术。
3.2 实时数据的处理技术
随着社会大众提升关注数据库内存的关注度,相关技术人员更加重视数据内存技术的提升,将研发重点放在内存中。相比较内存的数据以及磁盘,区别就是速度比较快。可以提高应用的性能,依据目前电力系统的发展现状,运用内存数据库的形式比较广泛,能够有效提升数据的实时性。智能电网会整合以及集成各个环节和用户的数据信息,从而分析各地的电能消费状况,及时采取整改措施。状态监测具有相对严格的要求,在数据存储以及处理平台方面。运用云计算技术,能够处理大数据,但是能够进一步提升监测数据存取性的是云平台,同时满足实时性的具体要求。如果新型绿色能源发电功率不稳定,就会影响电网的正常工作,这对于电网调度来说是不小的压力。根据目前国家电网调度以及控制模型的分析,不可预测性是小型发电系统的特征,因此,需要创建新型的电网状态监控系统,详细跟踪电网的实时状态。
3.3 面向电力用户服务的需求
电力用户是用电的消费者,具有主体的地位,随着当前经济社会的不断发展,用电用户对于电力的需求呈现出更高水平的发展趋势,通过技术的不断创新和发展,能够有效的满足于电力用户的服务需求,并为之提供更加优质的供电服务,这也是电力行业向服务型行业转变的重要手段之一。智能电网大数据技术的在用电用户服务方面主要提供了两种技术支持:一种是需求侧管理。智能电网大数据技术能够根据气候条件、行业分布的不同,对用电用户进行分类,能够为每一类用户绘制日常用电数据表,从而来为后续电力供应和电网规划提供数据基础,同时还能够根据用户需求响应的不同,来分析用电用户容量上的差异情况,为其制定更加合理的管理制度。另一种是用户能效分析。智能电网大数据技术能够实现用电设备能效情况的数据收集,并能够进行横纵向上的对比,分析出于典型用电曲线不同的用户,以此来促进电网的良好发展。
4 结语
当前智能电网大数据实施技术还存在部分限制,我们都应该始终坚持对智能电网大数据平台建设的研发工作,更好地发展中国电力工业,用更智能化、信息化、数据化的智能电网平台更好地服务广大电力用户。
参考文献
[1]陈敬德.大数据技术在智能电网中的应用现状及展望[J].高压电器,2018,54(01):35-43.
[2]费思源.大数据技术在配电网中的应用综述[J].中国电机工程学报,2018,38(01):85-96+345.
[3]黄亦庄.智能变电站是变电站综合自动化的发展目标[J].电力系统保护与控制,2017,45(36):90-17.
[4]梁甜甜.开放式自动需求响应通信规范的发展和应用综述[J].电网技术,2017,61(36):27-87.
论文作者:张瑜
论文发表刊物:《电力设备》2019年第4期
论文发表时间:2019/7/5
标签:数据论文; 电网论文; 智能论文; 技术论文; 用户论文; 信息论文; 实时论文; 《电力设备》2019年第4期论文;