摘要:近几年,我国城市发展迅速,人们对电能的需求也越来越高。电力资源的供求与电力企业发展息息相关,为了恰当处理供需问题,急需通过创新技术加以改善。而随着电力行业的快速发展,电厂普遍引入了新型热能动力锅炉,其既能够保证日常生产中的利用率,还能够有效缓解能源短缺问题,具备良好的节能环保性。因此本文深入探析了电厂热能动力锅炉燃料与燃烧方式,以期为电厂生产实现结构转型提供有力帮助。
关键词:电厂;热能动力锅炉;燃烧分析
引言
近些年来,伴随我国电厂发展规模的不断加大,热能动力锅炉的应用范围越来越广泛,在电厂当中,通过合理应用热能动力锅炉,不但能够提升燃料的燃烧效率,而且有效降低了燃烧完毕污染物的排放量,为人们提供更加干净、整洁的居住环境。物质燃烧的三个条件分别是可燃物、燃点与氧气,电厂中的热能动力锅炉属于一种比较先进的能量转换设备,通过向其内部输入一定量的化学能与电能,能够在短时间转换成热能。
1研究电厂热能动力锅炉燃料及其燃烧特点的现实意义
与传统的电厂锅炉相比较而言,热能动力锅炉的出现,大大减少了锅炉燃料的使用量,保证热能得到更好的输出,电力能源的利用效果越来越好。通过研究电厂热能动力锅炉燃料及其燃烧特点,能够保证能源紧缺问题得到全面解决,真正达到节能减排的目标,对电厂的可持续绿色发展起到良好地推动作用。在一些规模比较大的电厂当中,由于采用普通的锅炉较多,在一定程度上浪费了大量的锅炉燃料,因此,大力发展并合理应用热能动力锅炉至关重要。
锅炉是保障电厂稳定、有序经营的基础,但是,由于电厂中的热能动力锅炉内部结构存在非常多的缺陷,使得锅炉燃料的浪费量逐年增加,锅炉的运行时间越来越短,降低了燃料的燃烧效果。通过研究电厂热能动力锅炉燃料,包括锅炉燃料的燃烧特点,能够帮助有关工作人员进一步了解各项锅炉燃料的性能,并对热能动力锅炉内部结构进行科学、高效的优化,从根本上延长锅炉的使用时间,降低电厂的燃料采购成本。
2电厂热能动力锅炉燃烧方式
2.1气体燃料
现阶段,锅炉气体在燃烧时的类型为气体长焰燃烧,此种燃烧类型面积相对较大,一般不会和气体发生直接接触,所以被人们称为扩散型燃烧。此种类型气体在实际燃烧时需要在火焰喷射时通过利用扩散本身的优势来与空气进行接触,因此将此种燃烧类型称之扩散型燃烧。在该类型燃烧当中,需要在火焰实际燃烧时充分利用此类型燃烧本身所存在的优势和空气进行良好地结合,以此来提高燃烧所产生的效果,从而促使火焰在燃烧长度上能够得到有效增加。此种类型燃烧还会受到烧嘴本身的制约,无法在燃烧时和空气进行充分接触,其实在喷射时需要在另一部燃烧时和空气进行良好接触,从而提高火焰本身所产生的燃烧效果,由于受到空气所产生的影响,火焰长度此刻将会变得相对较短,同时另一部燃烧也能够和气体完全结合在一起,如此便能够加速在火焰上的喷射,但正因如此,也无法充分观察到火焰具体的结构和形状。
2.2固体燃料燃烧
固体燃料燃烧主要存储在挥发性较差,且不具备挥发结构的固体燃料内。在实际燃烧时,结构表面主要产生CO2和CO。在实际燃烧条件允许的情况下,CO2通过氧化作用,转化成燃烧的CO结构。主要燃烧条件为熔点比较低,在实际燃烧中,因为无法充分与氧气接触,从而使得燃烧结构表面的可燃性明显降低,以此成为固体的燃烧形态。另外,固体燃烧在平时日常生活中的应用比较常见,例如蜡烛,在使用时,如果时间过长,那么就可以发现固体燃烧的特性。固体燃烧针对的是极易被燃烧分解的结构,所以燃烧时一般产生的烟雾都比较厚重,也可以被看作是结构燃烧不充分,造成固体燃烧。
期刊文章分类查询,尽在期刊图书馆
3电厂热能动力锅炉运行特点
所谓热能动力锅炉,主要指的是在锅炉内部加入适量燃料,这些燃料经过一定时间的燃烧之后,能够将自身的热能完整释放,由于热能具备一定的规模性,主要通过水为载体进行传递,热能够以水为载体传递给外界。锅炉外部的水进入到其内部之后,会经过动力锅炉的受热部分,吸收大量的热量,使得水的温度越来越高,以水蒸气为主要体现形式,操作人员利用专门的引出装置将水蒸气引出,保证热能动力锅炉内部的燃料能够进一步充分燃烧。
锅炉内部燃料在燃烧的过程当中,会持续、不间断的放出大量热量,在锅炉内部高温的作用之下,产生一定量的高温烟气,运用热传播原理进行分析能够得知,高温烟气也能够将锅炉中的热量进行有效传递,高温烟气传递完热量之后,其自身的温度越来越低,经过锅炉烟囱全部排放。
想要保证电厂中的热能动力锅炉真正实现有序、稳定的运行,有关操作人员需要在锅炉内部投入一定量的燃料,如果锅炉燃料投入量过多,会降低热量转换效率,如果燃料投入量过少,燃料虽然能够进行充分燃烧,但是热量的传递时间会延长,影响电厂的经济效益。
4电厂热能动力锅炉燃烧过程
4.1预热阶段
之所以预热,主要是为了保证燃料蒸发的效果,使其能够快速被溶解,所以燃烧之前,应将锅炉中的燃料烘干,并进行适当的热处理,然后再增加温度。一般温度需要严格控制在300℃~4000℃之间。在此环境下,煤炭热能动力燃烧会十分充分,能够将煤炭中的水分彻底去除,从而形成焦炭。
4.2燃烧阶段
在预热阶段之后,燃料已经挥发彻底,在挥发酚燃尽之后,剩下的焦炭开始燃烧,然后进入燃烧阶段。在此阶段,燃料燃烧需要具备充分的氧气,与氧气有机接触,燃料才能够剧烈燃烧,从而释放热量。
4.3燃尽阶段
在经过既定时间的燃烧后,燃料的可燃烧部分已经全部燃烧殆尽,只有其中小部分因为炭灰包裹尚未燃烧,在燃尽阶段,不能终止供氧,需要持续通入一定氧气,从而促使剩余的燃料充分燃烧,进而有效保障燃烧的充分利用率。
5电厂热能动力锅炉燃烧控制措施
其一,燃料控制。严格按照锅炉蒸汽负荷要求,最关键的是控制燃烧量,这主要是由于锅炉给风对送风、引风控制有着直接影响。而燃料控制则是为了消除内部干扰,改善系统效率,因为各部分之间密切相关,因此彼此间的相互影响也需要加以重视,这就需要积极关注燃料质量与供给装置机械数量。其二,送风量控制。为了确保燃烧的经济性,也为了应对燃料量变化,适当改变送风量,送风量的主要任务是相互协调送风量与燃料量,以促使锅炉燃烧效率处于最高状态,从而保证锅炉经济效益与用户需求相符。但是,在引风量控制系统中,要求炉膛压力控制在既定标准内,因此,引风量与送风量间应保持平衡,而且炉膛压力也与锅炉燃烧的安全性、经济性密切相关,压力过大喷火会引发爆炸,压力小冷风进入炉膛会直接影响燃烧。所以,可以将送风量当作前馈信号,以此改善系统调节能力。
结语
综上所述,工业锅炉的种类相对较多,其在实际应用过程中所产生的效果也存在差异,这便需要相关工作人员能够在实际应用过程中根据具体情况和条件来选择最适当的锅炉类型,以此来有效提高锅炉本身的经济效益。所以,在开展相关的工作时应当对工业锅炉自身的燃烧原理进行分析,解决其中存在的锅炉燃烧过程中的问题,促使其在实际应用过程中产生更好的效果。本文通过对工业锅炉燃料和燃烧进行分析,促使人们对其有更加深入的了解,有利于工业锅炉的发展。
参考文献:
[1]李阳冬.电厂热能动力锅炉燃料及燃烧分析[J].江西建材,2014(20):200-201.
[2]康付帅.电厂热能动力锅炉燃料和燃烧探析[J].科技创新与应用,2017(15):15-156.
[3]隋本友.电厂热能动力锅炉燃料及燃烧[J].环球市场信息导报,2016(48):127.
论文作者:武金玉
论文发表刊物:《电力设备》2019年第3期
论文发表时间:2019/6/20
标签:锅炉论文; 燃料论文; 热能论文; 电厂论文; 动力论文; 热量论文; 火焰论文; 《电力设备》2019年第3期论文;