5g移动通信网络的关键技术与分析论文_黄成进

5g移动通信网络的关键技术与分析论文_黄成进

中国移动通信集团广东有限公司河源分公司 517000

摘要:移动通信技术的飞速发展也不断改变着人们的生活方式,为各个领域提供了更多的便利。目前,4g通讯技术发展得更加成熟,4g技术的持续普及也表明,未来数据通信将逐渐取代语音通信,在通信业中扮演更重要的角色。基于这一背景,5g移动通信逐渐成为各国研究的热点。把握机遇、掌握关键技术,不仅是一场简单的通信技术竞争,更是一场综合国力的竞争。本文就5G进行了概述,并对5G移动通信网络关键技术进行了分析。

关键词:5G;移动通信网络;关键技术

引言

目前,4G移动通信技术得到了广泛使用,具有通信速度快、通信容量大等优点。而5G移动通信是4G移动通信技术发展的基础上出现的,是4G 技术的不断完善和创新的体现,是通信领域新的里程碑,引起了各运营商的关注。5G是第五代移动通信技术的出出,大大提高了数据信息传输速度,高达3Gb/s,在现代社会发展中将会得到普及。

一、5G概述

5G即第五代移动通信系统,是新一代的无线通信网络,主要是用于满足2020年以后人们对移动通信的需求,是4G的延伸。5G要具有低功耗、低成本、高传输速率、时延小以及支持更多的用户通信等特点,还需要其突破通信设备移动速度过快导致掉线这一问题,要求其在500km/h的速度下保证通讯畅通等要求。5G的发展方向为智能化、自动化以及全面化,未来是非常乐观的。

二、5G关键技术分析

和4G相比,5G的提升是全方位的,按照3GPP的定义,5G具备高性能、低延迟与高容量特性,而这些优点主要体现在毫米波、小基站、Massive MIMO、全双工以及波束成形这五大技术上。

2.1毫米波

众所周知,随着连接到无线网络设备的数量的增加,频谱资源稀缺的问题日渐突出。至少就现在而言,我们还只能在极其狭窄的频谱上共享有限的带宽,这极大的影响了用户的体验。

那么5G提供的几十个Gbps峰值速度如何实现呢?

众所周知,无线传输增加传输速率一般有两种方法,一是增加频谱利用率,二是增加频谱带宽。5G使用毫米波(26.5~300GHz)就是通过第二种方法来提升速率,以28GHz频段为例,其可用频谱带宽达到了1GHz,而60GHz频段每个信道的可用信号带宽则为2GHz。

在移动通信的历史上,这是首次开启新的频带资源。在此之前,毫米波只在卫星和雷达系统上被应用,但现在已经有运营商开始使用毫米波在基站之间做测试。

当然,毫米波最大的缺点就是穿透力差、衰减大,因此要让毫米波频段下的5G通信在高楼林立的环境下传输并不容易,而小基站将解决这一问题。

2.2小基站

上文提到毫米波的穿透力差并且在空气中的衰减很大,但因为毫米波的频率很高,波长很短,这就意味着其天线尺寸可以做得很小,这是部署小基站的基础。

可以预见的是,未来5G移动通信将不再依赖大型基站的布建架构,大量的小型基站将成为新的趋势,它可以覆盖大基站无法触及的末梢通信。

因为体积的大幅缩小,我们设置可以在250米左右部署一个小基站,这样排列下来,运营商可以在每个城市中部署数千个小基站以形成密集网络,每个基站可以从其它基站接收信号并向任何位置的用户发送数据。当然,你大可不必担心功耗问题,雷锋网之前曾报道过:小基站不仅在规模上要远远小于大基站,功耗上也大大缩小了。

除了通过毫米波广播之外,5G基站还将拥有比现在蜂窝网络基站多得多的天线,也就是Massive MIMO技术。

2.3Massive MIMO

现有的4G基站只有十几根天线,但5G基站可以支持上百根天线,这些天线可以通过Massive MIMO技术形成大规模天线阵列,这就意味着基站可以同时从更多用户发送和接收信号,从而将移动网络的容量提升数十倍倍或更大。

MIMO(Multiple-Input Multiple-Output)的意思是多输入多输出,实际上这种技术已经在一些4G基站上得到了应用。但到目前为止,Massive MIMO仅在实验室和几个现场试验中进行了测试。

隆德大学教授Ove Edfors曾指出,“Massive MIMO开启了无线通讯的新方向——当传统系统使用时域或频域为不同用户之间实现资源共享时,Massive MIMO则导入了空间域(spatial domain)的途径,其方式是在基地台采用大量的天线以及为其进行同步处理,如此则可同时在频谱效益与能源效率方面取得几十倍的增益。”

毋庸置疑,Massive MIMO是5G能否实现商用的关键技术,但是多天线也势必会带来更多的干扰,而波束成形就是解决这一问题的关键。

期刊文章分类查询,尽在期刊图书馆

2.4波束成形

Massive MIMO的主要挑战是减少干扰,但正是因为Massive MIMO技术每个天线阵列集成了更多的天线,如果能有效地控制这些天线,让它发出的每个电磁波的空间互相抵消或者增强,就可以形成一个很窄的波束,而不是全向发射,有限的能量都集中在特定方向上进行传输,不仅传输距离更远了,而且还避免了信号的干扰,这种将无线信号(电磁波)按特定方向传播的技术叫做波束成形(beam forming)。

这一技术的优势不仅如此,它可以提升频谱利用率,通过这一技术我们可以同时从多个天线发送更多信息;在大规模天线基站,我们甚至可以通过信号处理算法来计算出信号的传输的最佳路径,并且最终移动终端的位置。因此,波束成形可以解决毫米波信号被障碍物阻挡以及远距离衰减的问题。

2.5全双工技术

全双工技术是指设备的发射机和接收机占用相同的频率资源同时进行工作,使得通信两端在上、下行可以在相同时间使用相同的频率,突破了现有的频分双工(FDD)和时分双工(TDD)模式,这是通信节点实现双向通信的关键之一,也是5G所需的高吞吐量和低延迟的关键技术。

在同一信道上同时接收和发送,这无疑大大提升了频谱效率。但是5G要使用这一颠覆性技术也面临着不小的挑战,根据《移动通信》之前发布的资料显示,主要有一下三大挑战:

1.电路板件设计,自干扰消除电路需满足宽频(大于100MHZ)和多MIMO(多于32天线)的条件,且要求尺寸小、功耗低以及成本不能太高。

2.物理层、MAC层的优化设计问题,比如编码、调制、同步、检测、侦听、冲突避免、ACK等,尤其是针对MIMO的物理层优化。

3.对全双工和半双工之间动态切换的控制面优化,以及对现有帧结构和控制信令的优化问题。

三、5G无线通信技术的实际应用

3.1 在安卓系统中的应用

目前来说,大多数移动智能终端采用的系统都是以安卓为主,它是一种以Linux为基础的自由和开放源代码的操作系统,在移动设备中具有明显的应用优势。

安卓系统采用的是分层架构,主要划分为四个层次,从高到低依次是应用程序层、应用程序框架层、系统运行库层以及系统内核层。四个层次中,系统内核层采用的是5G纳米核心技术,以此来完成安卓基础性文件和硬件驱动的分离。

此外,安卓系统自身所具有的开放性特征使得其安全系数大大下降,5G纳米技术所具有的保密性可以在量子密码学的应用下增强加密等级。

3.2 在光场相机中的应用

光场相机是一种先拍照后对焦的照相设备,它的原理是在光场技术的作用下,在进行拍照时只需要进行构图就可以了,不再需要进行对焦处理,这样的一大好处就是可以对现有的相机拍照方式和习惯起到改善作用,它具有很好的抓拍优势,只要被照的物体在相机的焦距范围内,对焦点都可以在拍完之后进行随意的选择,前提是在拍照时焦距范围内的所有光学信息都已经被记录起来,因此,它自身的容量会很大,存储一张照片可能需要至少200M的空间,这在侧面就需要有更快速的传输速度和储存空间做

保障,而5G技术自身所具备的优势特点正好可以满足这一要求,此外,依据它的这一特性,它在安全防卫监控工作中的应用具有良好的前景。

3.3 SG无线通信技术的具体应用

安卓系统是以开放源代码和Linux为基础开发的操作系统,被广泛应用于平板电脑、智能手机系统中。安卓系统采用了分层架构,从高到底总共分为4层,分别为应用程序层、框架层、运行层和内核层。在分层架构中,5G纳米核心技术被应用于系统内核层,可以完全分离安卓基础文件与硬件的驱动系统。利用5G通信技术的高速无线传输优势,可保证云储存端与终端同步实现硬件驱动,从而缩小储存数据信息所占用的空问,并且还能够提高终端硬件外设装置的丰富性。安卓系统具备开放性强的特点,这也对信息数据的安全性带来了严峻考验,而利用5G通信技术中的纳米技术,能够对通信进行加密,引入量子密码学的相关技术避免通信中出现信息泄露问题,保护安卓终端设备的安全性。

在未来,5G移动通信网络会向着更高的系统吞吐率,通信终端与相关设备会更加的智能化,并且在原有的网络覆盖的基础上,网络的覆盖面积会进一步扩大。而随着技术的不断发展,通信设备的制造成本会进一步降低,通信变得更加的方便快捷和实惠;设备的能耗方面,也随着技术的进步,会更低;通信设备的体积更加的小。

结束语

移动通信技术方便了人们的工作和生活。智能终端的快速发展,使相关行业对通信技术提出越来越高的要求。研究5G移动通信网络的关键技术是目前整个通信行业共同关注的问题。如今,针对5G移动通信技术的有些问题,依然有很大的难关需要攻克。只有对相关的技术做出更加深入的研究,不断完善,不断改进。才能早日迎接一个全新的移动通信时代。

参考文献

[1]程方.第五代移动通信网络系架构机器关键技术[J].重庆邮电大学学报.2016.26

[2]王实.5G移动通信发展趋势与若干关键技术[J].信息通信.2015.12

[3]G通信.罗德与施瓦茨公司支持未来移动通信网络5G测试解决方案[J].电子测量与仪器学报.2016.30

[4]尤肖虎.5G移动通信发展趋势与若干关键技术[J].中国科学:信息科学.2014.5

论文作者:黄成进

论文发表刊物:《基层建设》2019年第1期

论文发表时间:2019/4/2

标签:;  ;  ;  ;  ;  ;  ;  ;  

5g移动通信网络的关键技术与分析论文_黄成进
下载Doc文档

猜你喜欢