摘要:在高压输电线路综合防雷措施的研究与应用中,不仅提升了输电线路的抗雷特性,还对人类生活和生产提供了有效保障。在此基础上,人们通过对放电原理总结,以及对雷电压和雷电流的形成研究,制定出一系列输电线路防雷措施,并将其应用到输电线路防护上,取得了不错的效果。未来,我国对输电线路架设要求会不断提升,需要相关工作人员对输电线路防雷措施做进一步研究,为我国电力系统稳定运行提供保障。
关键词:输电线路;雷击故障;防雷措施;研究应用
1雷击放电过程研究
1.1放电原理
带电荷的雷云是造成雷电现象的主要原因。当水滴穿过云层时,出现撞击分裂现象,其中分裂出来的水沫携带负电荷,由于水沫的质量较轻,会上升至云层形成带负电的雷云,而带正电的雨滴会迅速下降,形成降雨。当雷云积聚过多时,会感应到大地上雨水的正电荷,从而产生强大的电场,最终形成雷击。此时,如果雷云继续扩大,会导致大气的电场强度增加,在雷云之中形成火花放电。在放电过程中,有时会产生几百千安的瞬时电流,再加上大气中光和热的作用,最终形成闪电和雷鸣。
1.2雷电压和雷电流的形成
雷电现象的产生主要是由于空气中游离的导电分子进入到雷云中的高电势点,如果这种强大的雷电击中高压导线,雷电中携带的电流将会在沿着导线两端运行,改变导线中的电压和电流配比。一般情况下,导线中的电压行波u与电流行波i的比值为波阻抗,数值一般在300Ω。若高压线路经过雷击之后塔角的接地电阻会减小,从而在地面产生雷电反射现象,此时塔顶电位为零。但是通过雷击作用,输电线路中的电流值增加了一倍,由于输电线路中的电阻不可能为零,因此线路中会出现压降,形成雷电压和雷电流。
2高压输电线路雷击事故原因
雷击跳闸事故直接影响高压输电线路正常运行,导致雷击跳闸事故的原因较多,具体表现为如下方面:①杆塔接地效果不佳,使得接地电阻阻值过大,降低了高压输电线路防雷能力,从而增加雷击事故发生几率;②绝缘配置欠缺,在高压输电线路运行过程中,绝缘配置主要起到避免发生电流回流问题的作用,若在具体运行中绝缘配置欠缺则极易导致跳闸事故。并且由于很多绝缘设备使用时间较长,出现了老化情况,增加了跳闸事故的发生几率;③避雷线使用不规范,避雷线是高压输电线路重要避雷措施,当发生雷击时,避雷线能够将雷电和线路隔绝,进而避免雷击事故发生。但是在具体设计过程中,很多人员忽略了杆塔保护角度问题,使得避雷线使用存在较大局限性,增加了闪络问题发生几率。
3高压输电线路综合防雷措施
3.1缩减杆塔接地电阻
在高压输电线路运行过程中,杆塔接地电阻对杆塔顶电位产生重要影响,通常情况下,若杆塔高度属于正常水平,当其型号、尺寸、数量及其绝缘子型号确定后,缩减杆塔接地电阻能够有效提高线路的耐雷水平,并在最大限度上降低反击概率。因此在防雷工作开展过程中,工作人员应采取有效措施,合理处理杆塔接地电阻问题。例如在我国某地区高压输电线路防雷工作开展中,具体采取如下方式缩减杆塔接地电阻:①使用接地电阻降阻剂,降阻剂pH值为7.5~8.6,可对接地体产生钝化作用,当接地极周围敷设完工之后,工作人员可在其周围放置降阻剂,增大了接地极外形尺寸,从而降低周围大地介质与接地极之间的接触电阻,起到良好的降阻效果;②爆破接地技术,工作人员首先进行爆破制裂,接下来在裂缝中放入低电阻率材料,具体使用压力机进行操作,从而有效改善大范围内土壤的导电性;③外引接地,选取某一低土壤电阻率区域,在其中敷设辅助接地装置,进而降低整个接地系统电阻,若接地装置附近存在不冻河流,此方法效果显著,但是其会增加防雷成本,在具体操作时接地极长度最好控制在100m以内。
期刊文章分类查询,尽在期刊图书馆
3.2应用不平衡绝缘方式
不平衡绝缘方式具有较强的经济性,并且操作起来较为方便,能够有效提高线路的绝缘水平,进而增加了反击和绕击的耐雷能力。在高压线路具体运行中,高杆塔、大跨越的线路跳闸几率明显高于一般线路,为了降低跳闸事故发生几率,可以适当加大避雷线与大跨越档距导线之间的距离,也可增加线路绝缘子串的数量,从而增强绝缘性能。例如在我国某地区高压输电线路防雷工作中,操作人员选择了不平衡绝缘方式,两回路的绝缘水平相差值设定为相电压峰值,从而保证在雷击时,闪络先发生在绝缘子串片数较少的回路中,将闪络后的导线当作地线,进而促进另一回路耦合作用增强。降低对应绝缘子串的过电压,增强线路的耐雷水平,降低闪络事故发生几率,从而保证此回路可正常供电。
3.3科学合理架设避雷线
在架空送电线路防雷过程中,避雷线起到了关键作用,其功能主要表现为:能够隔离闪电,避免雷电直击导线,当雷电击中杆塔时,其可对雷电进行分流,从而减少流入杆塔的电流,降低塔顶电位。因此在高压线路防雷工作开展中,工作人员应结合高压线路运行环境,科学合理的设置避雷线。例如在我国某地区229kV高压输电线路防雷工作开展中,工作人员采取如下措施架设避雷线:在全线范围内架设避雷线,缩减避雷线对边角线的保护角,具体设置为20~30°。在操作过程中充分考虑了耦合会随着保护角减少而增加的问题,在具体设计中应尽量权衡耦合损耗和绕击率,采取经济性较高的保护角。同时合理控制杆塔两根地线间的距离,必须小于导线与地线间垂直距离的5倍。此外,为了达到良好的保护效果,在每基铁塔处避雷线必须进行接地处理。
3.4安全输电路径的设置
根据相关数据统计显示,往往输电线路遭受雷击的区域比较固定。因此,在输电线路设计过程中,要结合当地实际情况,避开雷击严重区域,可以有效降低输电线路雷击发生的可能性。总的来说,雷击的集中区域一般在山区的风口处、潮湿山脉以及电阻率较高的土壤地带等。
3.5线路档距设置
当输电线路受到雷击影响之后,雷电波会沿着输电线路进行双向传播。如果改变线路档距,输电线路的雷击承受水平也会产生一定变化。在理想环境下,不考虑环境和其他避雷装置的影响,线路档距越大,线路的耐雷击水平就会越高,当线路档距达到一定数值时,输电线路的抗雷击特性会达到最大,当线路档距继续增大时,线路的抗雷特性会保持最大数值不变。
3.6输电线路电压设置
以500kV的输电线路为例,一般500kV输电线路都以交流电压传输为主,而交流电压在传输过程中具有周期性,在不同时段中产生的耐雷水平也不同。因此,在防雷措施应用过程中,相位角的不同,线路的耐雷水平也有所不同。一般来说,相位角的90°时,输电线路的耐雷水平最低,在100kA左右,方相位角达到270°时,输电线路的耐雷水平达到最大,数值在200kA左右。
结束语
高压输电线路在电力传输中起到重要作用,不仅为人们生活和生产工作提供保障,同时维护了电力系统的稳定运行。随着输电线路等级的不断提升,对杆塔的高度和线路尺寸要求也越高,在一定程度上增加了雷击现象的影响程度。在我国电力系统中,因为雷击造成线路跳闸现象的比例在36%以上,在有些国家中还达到了50%。因此,对高压输电线路综合防雷措施的研究显得至关重要。
参考文献:
[1]周一.高压输电线路综合防雷措施探讨[J].科技展望,2016,2604:114.
[2]王营.110kV高压输电线路防雷保护探讨[J].科技创新与应用,2016,11:198.
[3]李孔光.浅析220kV高压输电线路防雷接地技术[J].科技展望,2016,2617:113.
[4]张永晴.高压输电线路综合防雷措施探讨[J].中国高新技术企业,2016,32:125-126.
论文作者:代洪兵1,李小龙2
论文发表刊物:《电力设备》2017年第28期
论文发表时间:2018/1/19
标签:线路论文; 防雷论文; 避雷线论文; 杆塔论文; 高压论文; 雷电论文; 电阻论文; 《电力设备》2017年第28期论文;