人工神经网络模型的经济应用及发展趋势_神经网络模型论文

ANN模型的经济学应用及其发展趋势,本文主要内容关键词为:发展趋势论文,经济学论文,模型论文,ANN论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。

中图分类号:F224.0 文献标识码:A 文章编号:1003-5656(2006)05-0005-07

人工神经元网络(Artificial Neural Network,简称ANN,下同)是一门活跃的边缘性交叉学科,研究它的发展过程和前沿进展趋势问题,对于经济学研究具有十分重要的意义。神经网络理论是用来处理巨量信息和大规模并行计算的基础,既是高度非线性动力学系统,又是自适应组织系统,可以用来描述认知、决策及控制的智能行为,其核心问题是智能认知与模拟。社会经济本身是一个动态随机的非线性系统,各种经济的、政治的、社会的因素相互作用,相互影响,传统的计量统计模型着眼于静态分析,且形式往往过于复杂不易准确掌握,或者包含了很多模糊性和混沌性的因素,不利于经济问题的精确分析。而人工神经元网络则由于其自身具有分布式处理、自组织、自适应、自学习、鲁棒性、容错性等一系列优良特性,其良好的非线性映射能力避开复杂的参数估计过程,同时又可以灵活方便地对多成因的复杂未知系统进行高精度的建模,为非线性经济系统分析研究提供新的方法。

随着对ANN研究的不断深入,其应用领域和范围也越来越广,将ANN模型用于经济领域中的识别、分类和预测等研究具有很高的实用价值。同时神经网络理论的优势及其良好的算法、模拟性能也得到了大家广泛的证实和认同。另外,对于其局限性的克服也已经有越来越多的策略和方法。

一、ANN的技术原理——以自组织特征映射网络为例

人工神经元网络旨在模拟人脑的知识获得和组织运算过程,是大量简单的神经元广泛联结而成用以模拟人脑思维方式的复杂网络系统。下面以ANN模型中较先进的,也是得到广泛应用的自组织特征映射网络为例,简要介绍神经网络模型的基本结构和算法流程。

自组织特征映射模型(Self-Organizing Feather maps,简称SOFM)是芬兰学者科荷伦(Teuvo Kohonen)于1981年提出的。网络的拓扑结构只有两层,即输入层和竞争层(图1)。SOFM网络的工作原理是:当网络接受外界输入模式时,将会分为不同的区域,各区域对输入模式具有不同的响应特征。也就是说,特征相近的输入模式靠得比较近,差异大的分得比较开。在各神经元联结权值的调整过程中,最邻近的神经元相互刺激,而较远的神经元则相互抑制,更远一些则具有较弱的刺激作用。由此可见,自组织特征映射网络是无监督的分类方法,与传统的分类方法相比,它所形成的分类中心能映射到一个曲面或平面上,并且保持拓扑结构不变。

图1 自组织映射神经网络拓扑结构图

二、人工神经元网络(ANN)在解决经济问题中的优势及特点

有学者已经用人工神经元网络解决诸如会计、审计、金融(破产预测、信誉评估、股票预测、汇率预测、房地产价值评估等)、经济管理(区域经济增长仿真、国家外债管理模型)、决策支持(银行信用风险评估、洪水灾害风险预测模拟等)、市场划分(Segments)和生产预测(粮食生产预测、铁路客运市场分析)等方面的问题。由于人工神经元网络具有一系列独特的优良性质,与传统计量方法相比又具有明显的算法优势,可将其用于经济学研究中的识别、分类、预测、经济系统仿真和模拟等方面。目前它的发展已经与传统的计量模型等统计分析方法并驾齐驱,甚至于在前述领域的应用中比传统研究方法更胜一筹。

1.ANN模型具有分布式存储、自组织、自适应(adaptability)、自学习、鲁棒性(robustness)和精确性(accuracy)等优良性质,能完成对环境的适应和对外界事物的有效学习。神经元之间的连接强度也具有一定的可塑性,网络可以通过学习和训练进行自组织以适应不同的信息处理的要求。在运算中,知识的获取采用“联想”的方式获得最优匹配解,信息的输出能经过对记忆的处理获得正确和完整的信息。正是由于网络的这种容错性和联想记忆的功能,使人工神经元网络呈现出很强的鲁棒性。在经济研究中可以充分利用神经网络的这些特性建立与研究对象相适应的应用模型,经济生活中涉及的预测预报问题、金融决策与信用评价问题以及分类与决策等问题都可以运用神经网络来解决。比如用BP神经网络预测矿区环境污染的经济损失问题,股票市场行情分析预测等。[3]

2.从理论上看,人工神经元网络具有逼近任意连续映射的能力,即可以充分逼近任意复杂的非线性关系,且具有很好的泛化能力(generalization)。比如,在解决区域经济问题中与其它传统定量分析方法相比较,它能以一个多层前馈型网络来刻画一个高度复杂、高度非线性的映射系统(比如区域经济系统),进行经济系统仿真,通过其任意逼近能力得到变量之间的复杂关系,能够考虑变量之间的动态相互影响及作用,并将变量的随机性和不确定性等影响降到最低。另外,经济数据变量常常是处于经常变动环境中的,因此,ANN模型能够依靠它的泛化能力,通过不断的再学习,能够基于经验对知识进行累积、存储和模式识别,并能不断反映和适应新环境,学到隐含在样本中的有关环境本身的内在规律性。因此,它与传统的统计分析方法相比较,具有更高的精度(accuracy)、较低的预测风险和较小的误差。在经济研究的实践中,人们建立的汇率预报模型(即前向组合神经网络模型)不仅能准确地拟合汇率的过去值,而且能较精确地预报汇率的未来趋势,预报的结果比统计方法优越。在经济实践中,与计量模型相比,用人工神经元网络模型来预测通货膨胀率、经济周期、电价的边际价格、期货利率以及居民人均收入等准确率更高,效果也更好。因此,人工神经元网络具有很多传统分析方法所不具有的优势。

3.ANN模型是一个复杂的非线性动态系统,有很强的容错性。ANN模型很容易处理环境信息十分复杂、知识背景不清楚的问题或不完整的、模糊不确定或无规律的数据。尤其在信息不完备的情况下,用人工神经元网络能够很容易地解决这些问题。它在模式识别、方案决策、知识处理等方面具有很强的能力,可学习和自适应不知道或不确定的系统。比如Elman神经网络是一种具有部分反馈的神经网络,它可以很好的模拟动态系统,特别适用于模拟季节性和循环变动的对象。像股票市场就是一个典型的循环变动的动态系统,就可以用Elman网络预测股市动向,而失业问题是一个具有季节变动的系统,Elman神经网络同样可以用来预测模拟我国的失业问题。再以技术创新扩散为例,由于技术创新扩散问题非常复杂,涉及众多动态的、不确定性的因素,且系统内各因素之间、扩散系统与扩散环境之间存在着错综复杂的关联、相干、互动、反馈、自组织等效应关系,数据的搜集与整理存在困难,且很多数据信息是模糊不确定和无规律性的,在这种情况下,给人们认识和控制扩散过程带来了巨大困难,而以往所采用的方法存在较大的局限性,不能充分包含、反映扩散中的各种非线性关系,难以满足对技术扩散过程进行预测、控制和优化的应用需要,而建立技术创新扩散的人工神经元网络模型则可以很好地解决该问题,并且经过实践检验效果要优于传统的统计分析方法。

4.由于人工神经元网络在结构上采用大规模并行分布处理方法,信息处理是在大量单元中平行而又有层次地进行,这就使得快速进行大量运算成为可能。神经网络的并行性使得它能够考虑变量之间的相互影响及作用,提高模型拟合的精度。以上文提到的技术创新扩散问题为例,神经网络的这一特性就能够使它准确描述技术创新扩散的内在动因及发展变化规律。另外,由于技术创新扩散涉及众多因素,数据的运算量是非常巨大的,如果采用传统的统计分析方法很费时费力,并且结果不是很理想。而运用人工神经元网络则能够比较容易的解决这一复杂问题,并且能得到令人满意的结果。

综合以上认识,我们认为将人工神经元网络用于研究经济领域中的模拟、识别、分类和预测等是非常具有前景和实际应用价值的。

三、ANN网络模型的主要局限性及其克服策略与方法

1.ANN网络模型的主要局限性

人工神经元网络在解决经济问题中的有效性和实用价值已经被人们广泛接受并越来越受到重视,但它自身也存在一些技术上的缺陷和不足,这主要表现在以下两个方面。

(1)ANN网络模型是“暗箱”操作,也就是说它的理论基础不强,解释能力较弱。[4]

(2)网络结构设计和参数的选择缺少相应的理论支持,通常依赖于经验选择,基于梯度的学习算法常常会导致网络收敛于局部极值点。

2.克服策略与方法:

(1)对于存在的“暗箱”问题,如果希望对某些未知样本正确率反映较高,或者说推广能力更强,则应该在未知样本附近多选一些训练样本。网络输出的可信度与方差有关,如果输入与权值间的方差越小,则可信度越高。

(2)网络结构问题和参数选择问题是一个综合性的问题,它应满足多种不同要求。由于网络结构设计没有固定的可遵循的模式,有许多参数要靠经验选择,并经试验比较,比如隐层数、隐单元数和连接方式等。而在网络训练过程中也有一些参数要选择,如初始权值,学习步长,动量项系数等。要训练出一个实用网络常常需要大量的试验比较,才能从中选择出效果最好的。我们认为一个较好较便捷的方法是先咨询有关专家,同时要考虑所研究问题自身的特殊性,然后再设计网络结构及训练网络,当然,也有人提出,只保留效果最好的并非最佳方案,更好的方法是用各个网络的加权组合。规模大的网络不但学习时收敛较慢,且更易于避免陷入局部极小。通常情况下,训练样本有限,所以把推广能力作为主要要求,强调选择能达到要求的最小网络,当然这不是唯一的标准。以BP神经网络在房地产评估中的应用为例,通常情况下BP神经网络能使待判别样本分类正确率达到90%以上,但仍然存在误判训练样本,特别是当训练样本很多的情况下更是如此。其原因主要在于网络的拓扑结构设计不合理,收敛速度缓慢,预定选取的允许目标误差不够小等。这时应考虑房地产作为较特殊的商品,影响其价格的主要因素有哪些,然后对网络的层数、输入输出节点数、隐层数进行不断的调整和改进。最后,经过有关学者的研究,如果把距离算法与BP算法相结合,在对网络识别系统结构进行改进和调整之后,能够使网络分类的正确率提高到100%,相应的估价误差就从1.7%降低到0.3%。[5]

(3)ANN模型与多种分析方法融合共同解决经济问题会达到较理想的效果。比如可以与统计分析方法、人工智能方法、专家系统以及粗糙集理论(Roughset)相结合,各种技术之间相互取长补短,建立集成模型或混合系统其结果会更有效,且这种有效性不是各单部分之间简单相加能够比拟的。比如Taha等人将判别分析与回归分析方法应用到ANN模型中,结果提高了合同债权结构的预测精度。[6]Lee,Han和Kwon使用了三种混合的ANN模型来预测破产,增强了预测的精度和适应性。[7]以ANN与专家系统结合运用为例,Kuncicky等人就总结出了4种方法:第一种是连接专家系统(connectionist expert system)模型,将全部的或部分的专家系统功能和一种ANN相结合;第二种是符号连接模型,即用符号结构约束神经元网络的构建,然后用到高层认识任务中;第三种是模块化系统模型,将专家系统和神经网络以模块化的形式用于解决较大的问题;第四种是转化模型,将在专家系统中获得的知识传输给神经网络。[8]这些结合不仅允许ANN应用到决策的各种层次,而且大大提高了网络本身的质量。[4]以预测成都市居民用水量为例,这里采用了自组织方法、改进的算法和两种方法融合——基于自组织方法的神经网络模型三种方法分别进行了预测(结果见表1),从表中我们可以明显地看出两种方法组合建立的神经网络模型明显优于其他方法,且预测精度很高。[9]

表1 多种方法融合解决经济问题的有效性及误差对比分析

年份1997 1998 1999 2000

成都市居民生活用水量(万吨) 26872.21 29256.72 32070.57 33717.25

自组织方法 预测值27432.45 29783.52 32687.24 33021.16

相对误差(%)2.08 1.80 1.92 -2.06

改进的算法 预测值26534.27 28901.36 32492.18 33172.83

相对误差(%)

-1.26-1.21 1.32 -1.67

基于自组织方法的预测值26981.78 29479.56 32171.28 33835.39

神经网络模型 相对误差(%)0.41 0.76

0.31 0.35

四、人工神经元网络模型的应用实例分析

人工神经元网络有多种网络模型,就常用的RBF网络与BP网络相比较而言,基于正则化理论的RBF网络学习速度较快,无论网络的函数逼近能力、模式识别能力以及分类能力都优于BP网络,因此这里采用RBF网络来计算区域可持续发展度。要运用RBF神经网络模型预测区域可持续发展能力状况,可以按以下几个步骤进行:①构建反映区域可持续发展的相关指标(由于区域可持续发展能力评估指标的选取是一个非常复杂的过程,限于讨论的主题及篇幅,具体过程略),利用相关分析方法按照一定的标准(95%)剔除相关性强的指标,同时去除难以采集数据的指标。最后,我们把区域可持续发展能力预测指标细分为以下32个(见表2)。②采集相关指标的数据。采集数据的年份要尽可能的多一些,这样训练出来的网络模拟和预测能力会更强一些。③构建RBF区域可持续发展能力预测网络模型(见图2)。④将采集到的相关指标数据按照公式(1)(对于越大越好的指标)和公式(2)(对于越小越好的指标)进行无纲量化处理。

分别为R指标的最大值和最小值)。⑤RBF网络的学习与训练。将选出的指标当期值归一化处理后的数据作为网络的输入,下期值作为其对应的期望输出,送入如图3所示的RBF网络中进行训练。⑥利用MATLAB语言中的人工神经元网络工具箱函数newrbe进行相关的程序编制和计算。

图2 RBF函数网络结构图

下图是按照上述RBF神经网络模型对西安市做的一个区域可持续发展度预测图(图4)。如果我们要用其他传统的计量方法来解决这个问题,其运算过程则会非常复杂和繁琐,最终结果可能并不理想。

图3 区域可持续发展的径向基函数网络模型

图4 西安市区域总可持续发展度预测

五、人工神经元网络的发展趋势及其经济学应用前景

人工神经元网络是一个应用范围十分广泛的边缘性交叉学科,在各个工程领域均得到成功的应用。展望21世纪中叶,人工神经元网络理论研究将可能在智能和机器关系问题、神经计算与进化计算以及神经网络结构和神经元芯片等重大问题的研究方面会有重大突破,而其自身日益强大的外向性、扩展性以及良好的工具性必将进一步带动所有相关学科研究的突飞猛进,甚至产生质的飞跃。目前,大多数用于经济领域的ANN模型多来自科研机构,其产业化的程度并不高,把人工神经元网络应用于经济领域仅始于20世纪90年代,在国内也仅处于起步阶段,特别是比较成熟的模型并不多见。人工神经元网络理论自身的发展必然会给经济学研究插上腾飞的翅膀,并将可能成为继数量经济学、计量经济学之后经济学研究的一个重要领域。同时人工神经元网络理论也将必然为经济学研究提供强有力的分析工具。以上本文通过对神经网络模型的简要分析,概述了其用于经济学领域的优点和不足,并作了应用模型研究的尝试——通过对区域可持续发展能力水平的精确量化度量,能够为区域可持续发展以及制定区域经济政策提供科学的决策依据。运用神经网络模型对经济学问题进行深入的研究具有十分重要的理论和实践意义。

收稿日期:2006-04-15

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

人工神经网络模型的经济应用及发展趋势_神经网络模型论文
下载Doc文档

猜你喜欢