风险中性过程的非参数估计,本文主要内容关键词为:风险论文,参数论文,过程论文,此文献不代表本站观点,内容供学术参考,文章仅供参考阅读下载。
中图分类号:O211.4
引言
衍生证券(Derivative security)也称为或有权益(contingent claim),其价格依赖于其他基础资产(underlying assets)的价格。比如,股票期权的价格依赖于股票的价格,利率期货的价格依赖于市场利率,股票指数期货期权的价格依赖于股票指数期货的价格,等等。Black and Scholes 1973年提出的期权定模型,给金融市场上衍生证券交易价格的确定奠定了理论基础,尽管衍生证券定价理论已经取得丰富的成果,但随着各种数学物理手段向金融问题的渗透,以及现代计算机技术的支持,衍生证券定价研究仍方兴未艾,至今仍是金融数学和计量经济学的研究主流之一。
衍生证券定价理论的关键假设是市场不存在套利(arbitrage)机会,即使有机会也是瞬间即逝。此外还通常假设(1)每个市场参与者都可以以相同的无风险利率借入或贷出任意数量的资金;(2)市场是无摩擦的,不存在交易费用,不存在收益的税收;(3)市场是完全的,且任何一个衍生证券都可以利用其他基础资产“复制”出来。完全市场假设说明任何衍生证券都可以通过若干基础资产的组合来实现,从而在完全市场里任何衍生证券都可以定价。
上述结果是衍生证券定价理论的基本框架。Hull(1993)从实角的角度,Duffie(1992)从概率论的角度,Wilmott,Howison and Dewynne (1995)从微分方程的角度,都对衍生证券的定价理论有很好的叙述。显然,实现衍生证券定价的基础是基础资产价格过程(1)的描述,特别是风险中性过程(2)的描述,因为(3)和(4)都不依赖于。(因此也常将无套利定价称为风险中性定价)。由于无风险利率对衍生证券价格的影响并不很显著,一股假设其为常数,因而得到方差函数σ的估计从而得到风险中性过程的估计是衍生证券定价的核心问题。
事实上,基础资产价格(或收益)过程的方差函数的估计不仅是衍生证券定价问题的核心,也是其他的比如投资组合理论、风险分析、均衡理论等问题的关键。可以说,金融数学和计量经济学的统计分析重点是方差,而不象其他领域中的统计分析重点是均值。然而,由于方差不可观测,参数化模型将是危险的。Ghysels,Harvey and Renault(1996)就指出,用非参数方法估计方差函数是有意义的研究方向。
目前的许多工作都是以假定方差函数的特定参数模型为基础,但是,由于金融现象复杂多变,并且方差不可观测,用参数模型描述方差函数将是危险的。本文研究方差函数非参数模型的估计及其在衍生证券定价中的应用。一简单讨论了时间序列模型下条件方差函数的核估计和局部多项式估计,给出确定窗宽的M-图方法。二讨论离散模型下衍生证券的定价方法,给出近似的风险中性调整方法。三作了模拟计算。
一、条件方差函数的非参数估计
非参数时间序列分析近年来引起了统计学者的大量关注,并发展了一些较成功的方法。这些工作还主要集中于条件均值函数的非参数推断(见Hardle,Lutkepohl and Chen (1997)的综述),对条件方差函数的非参数推断的工作则相对不多,应用更少。然而,引言已经说明方差函数的非参数估计对衍生证券定价具有重要意义。本文主要讨论一阶滞后模型下条件方差函数的非参数估计。
在实际应用中,通常可选取核函数为正态函数,等等。其实,比核函数的选取更为很重要的是窗宽h的确定,它不仅决定了实际数据拟合程度,也是进行理论上讨论需要作重点假设的一个量。本文后面将讨论窗宽的选取。
局部多项式(以下简称LP)估计近年来引起了人们的广泛关注。Hastie abd Loader(1993)在非参数回归情形对之进行了讨论,Fan(1992)(1993)研究了局部线性加权回归的一些最优性质。这些都是LP方法在独立观测情形的工作,而LP方法用于时间序列数据情形则还不多,Hardleand Tsybakov(1997)用LP方法估计了一阶滞后模型的条件均值函数和条件方差函数,并证明了渐近正态性。
局部多项式估计比核估计在形式上要复杂一些,但LP估计的思想也很简单。根据Taylor展开,任何一个高阶可微函数都可用多项式来近似,对于一个高度非线性函数,采用一个全局型的多项式近似自然不可取,但如果用多顶式来近似待估函数的每一局部,则可望达到较好的近似效果,而局部范围的大小则由权函数控制。一般采用加权最小二乘方法来估计局部多项式系数,因此LP估计又往往称为局部加权最小二乘估计,特别地,最常用的是局部线性加权估计。
从而
交叉核实法提供的是一种客观的尺度,但在实际过程的处理时也是不容易的。首先,窗宽的确定要依赖于权函数ω(·)的选取,也就是将哪些数据看成异常数据。其次,窗宽的确定要依赖于我们对估计函数的曲线形状的要求,既不至于太光滑也不至于太不规则,最后,交叉核实法通常要求的计算量也非常大,比如,对于有200个观测数据的序列,对每一选定的h就要估计200次条件方差函数,即使在20个不同的h寻找最优的窗宽,也要估计4000次条件方差函数。更重要的,也是通常被忽略的,是交叉核实法或其他的基于极小预测均方差误差准则的方法没有考虑估计量的具体特征,比如无法判断窗宽对估计量的偏差和方差的影响。直观地可以想象,窗宽越小,也就是用更近的更小的近邻数据进行估计,这样在每一点可以会拟合得更“精确”,所以估计量的偏差很小。同时,因为每一点都拟合得很“精确”,使估计量的光滑性较底,在不同点的变动性更大,因而估计量的方差会增大。在通常估计均值函数时选取窗宽,一般不会同时考虑估计量的偏差和方差的问题,因而交叉核实法选取的窗宽也就通常都实用。但对于方差数的估计,我们不能忽视估计量的方差。因为方差函数的估计量的方差要涉及到总体的四阶矩,一般来说,涉及高阶的估计量方差都很大。因而,在选取窗宽时,必须对估计量的方差进行分析。尽量在不太影响偏差的情况下选取使方差最小的窗宽。
我们知道,估计量的均方误差通常可分解为方差与偏差平方之和,有时候我们仅希望一个方差较低的估计量,或者仅希望一个偏差较低的估计量,此时用交叉核实法选取的窗宽就不一定能达到这一要求。Cleveland and Devlin(1998)在讨论独立观测的回归函数估计时,建议使用估计量的均方误差分解来选取窗宽的M-图方法。刘忠(1998)将该思想借鉴到估计方差函数时的窗宽选取。这里仅给出具体的做法。
二、衍生证券定价
当用连续模型描述基础资产的价格或收益过程时,一般能够给出衍生证券的精确定价形式,但众所周知,连续模型的参数估计相当困难,而且衍生证券一般没有解析形式,通常依赖于一定的数值求解方法。在应用中通常是用离散模型描述基础资产价格或收益过程,然而,在一般情况下,此时只能给出近似的衍生证券定价。刘忠(1998)对此有较详细的叙述。
(一)近似的风险中性定价
假设仍用一阶滞后模型(7)描述基础资产的收益,对于在T时刻到期,且到期时价格为的欧式衍生证券,根据引言所述的风险中性定价理论,其在t时刻的价格为
(三)Black-Scholes公式定价
还可以结合一定的参数定价模型来实现定价。比如,如果是对欧式期权定价或美式期权定价,可以将条件方差函数的非参数估计与BS公式结合起来实现定价。
我们知道,BS公式是假设基础资产价格服从几何布朗运动的情形下得到的。尽管对于一般的离散模型(7),BS公式通常不再是风险中性定价的结果,但是,在许多时候,比如收益的方差是时间的函数时,或者收益的方差是It过程时,BS公式仍然成立或者近似成立,但此时BS公式中的方差应该是期权有效期内中的平均方差。刘忠(1998)对此有较详细的说明。因而,即使是一般的离散模型(7),对于欧式期权的定价采用BS公式仍然是合理的。
显然,采用BS公式(5)对期权定价时,如果无风险利率已知,方差就是唯一需要估计的量,而且上述讨论说明,一般情况下应该用期权有效期内的平均方差的估计代替BS公式的。
当然,最简单的也是最为常用的是将基础资产的历史收益的样本方差作为的估计,但这忽略了金融数据的条件异方差的个实。另外,历史样本段长度的选取也是没有合理的准则的,也正因为条件异方差性,不同样本段的样本方差可能有较大的差异。这在许多文献中都有说明,比如Rubinstein(1994)。最后,如果是对美式期权定价的话,由于要估计各个时间段内的平均方差,情况可能会更糟糕。
由于参数化模型估计的诸多缺点,采用一给出一些非参数估计是可取的。假设已经得到了收益的条件方差函数v(x)的估计。不妨假设期权的有效期是从n+1到n+T这段时间,获得期权有效期内的平均方差的估计可以有多种方法。
一种方法是逐步预测方法。首先对进行预测,然后再进行方差的预测。如果期权有效期比较长,这样预测的步数会比较多,实现起来不太自然。
可以看到,基于历史样本方基的BS公式对三种执行价的期权定价都有些偏高,非参数方差估计的定价对平值期权和虚值期权的定价偏低,而对实值期权的定价非参数方差估计的定价要比基于历史样本方差的定价要稍好些。从而非参数估计的定价区间看,都比理论结果(如果假设模拟的理论期权价格服从正态分布)大。
由于在模型(27)下用BS公式定价本身就是近似的,所以两种方法的定价有一定的偏差是可以理解的。另外,这里对模型(27)设定的参数使条件异方差性表现得还不是很强烈,所以非参数方差函数估计的定价比基于历史样本方差的定价的优越性还没有充分体现出来。而且,由于计算速度的原因,这里进行模拟的次数还比较少,更多的模拟结果可能会得到更有说服力的结果。而非参数定价的置信区间一般较大,这是因为非参数估计本身的方差就一般较大,况且这里是对条件方差函数的非参数估计。
所以,从这里的模拟计算看,非参数方差估计的定价是可行的。当然,对于这样的非参数定价,条件方差函数的估计好坏定价结果有很关键的影响。然而,由于条件方差函数的非参数估计还有许多问题没得到很好的解决,所以付诸实践可能还有一段较长的路。
标签:参数估计论文; 风险中性论文; 基础资产论文; 总体方差论文; 衍生证券论文; 方差公式论文; 风险模型论文; 期权论文; bs模型论文;